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Abstract

In recent years, the advancements of Artificial Intelligence (AI)-driven software systems

have reached a seemingly unstoppable momentum. From simple applications like to-do-

applications to the most complex ones like banking applications, the demand to integrate AI

into applications is exceptionally high nowadays. Whilst researchers and practitioners could

gain much understanding in developing AI applications, one critical quality attribute seems

left behind. This can be emphasized in a simple analogy: although we usually demand

professors and teachers to be qualified for their jobs and to be able to explain their reasoning

to students, for AI, our bar seems much lower if not absent. Some scholars see this lack of

explainability and resulting intransparency as detrimental. Despite much research efforts

in Explainable Artificial Intelligence (XAI), a meaningful integration thereof is still very

much a subject of ongoing research. Furthermore, for even the most critical applications,

e.g., the medical field, traditional Machine Learning (ML) methods cannot satisfy strict

privacy requirements. For this reason, the AI paradigm Federated Learning (FL) emerged

as a means to train ML models decentralized. Despite the benefits of explainability and FL

being present today, the integration of explainability into FL is still seriously lacking.

In this master’s thesis, we empirically researched the interaction between FL and explain-

ability. We show that the global FL model outperforms the local one in terms of accuracy

and prevalent XAI metrics and that data distribution affects the outcome more than the

employed FL algorithm. We investigate which XAI method is the most stable concerning

the effect of the predictive multiplicity, propose an adapted version of the XAI method

proposed in [50] to optimize explanations for XAI metrics, and lastly also show that further

security-related aspects influence XAI methods in a non-negligible way. Furthermore, we

will present a concept of explainability derived from a literature search encompassing ideas

from multiple disciplines with abduction as the central element in an attempt to better

understand what the term explainability means from a human-centric point of view. Finally,

with our user survey, we show that while demand for explainability is considered very high,

there exists a gap between the usage of AI and XAI methods and a notable difference in

how explanations are deemed satisfactory in the first place. Moreover, we show that the

benefit of XAI metrics as a means to improve explanations is questionable.
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Zusammenfassung

In den letzten Jahren haben Softwaresysteme, getrieben von Künstlicher Intelligenz (KI),

ein schier unaufhaltsames Momentum aufgebaut. Von einfachen Anwendungen wie To-do-

Listen zu den komplexesten Anwendungen wie in Banken-Systemen ist die Nachfrage, KI

in immer mehr Anwendungen zu integrieren, so hoch wie nie zuvor. Während Forscher und

Entwickler bei der Entwicklung von KI-Anwendungen bereits viele Erkenntnisse gewinnen

konnten, scheint ein entscheidendes Qualitätsmerkmal auf der Strecke zu bleiben. Dies

lässt sich mit einer einfachen Analogie verdeutlichen: Obwohl wir von Professoren und

Lehrern normalerweise verlangen, dass sie für ihre Arbeit qualifiziert sind und ihre Schluss-

folgerungen und Aussagen ihren Studenten erklären und begründen können, scheint die

Messlatte für KI-Anwendungen viel niedriger zu sein, wenn nicht gar zu fehlen. Einige Wis-

senschaftler sehen diesen Mangel an Erklärbarkeit und daraus resultierende Intransparenz

als unzumutbar. Trotz vieler Forschungsanstrengungen im Bereich der Erklärbarkeit von

künstlicher Intelligenz (XAI), ist deren sinnvolle Integration in Anwendungen noch immer

Gegenstand laufender Forschungsvorhaben. Darüber hinaus zeichnen sich noch andere

Probleme beispielsweise im Bereich der Medizin darin aus, dass traditionelle Modelle des

maschinellen Lernens (ML) die strengen Anforderungen an den Datenschutz nicht erfüllen

können. Um diesen Anforderungen Sorge zu tragen, hat sich föderiertes Lernen (FL) als

Mittel zum dezentralen Trainieren von ML-Modellen etabliert. Obwohl die Vorteile von

Erklärbarkeit und FL heute bereits vorhanden sind, ist die Integration von Erklärbarkeit in

FL mangelhaft.

In dieser Masterarbeit haben wir deshalb die Interaktion zwischen FL und Erklärbarkeit

empirisch untersucht. Wir zeigen, dass das globale FL-Modell das Lokale nicht nur in Be-

zug auf Genauigkeit, sondern auch in gängigen XAI Metriken überlegen ist, wobei wir

festellen, dass die Datenverteilung größeren Einfluss auf XAI-Metriken aufweist als die

verwendeten FL-Algorithmen. Wir untersuchten, welche XAI-Methoden am stabilsten sind

in Bezug auf den Effekt der Vielfachheit von Vorhersagen (engl. predictive multiplicity), und
schlagen eine Erweiterung für die in [50] vorgeschlagene XAI-Methode vor, um Erklärun-

gen für XAI-Metriken zu optimieren. Wir zeigen auch, dass sicherheitsrelevante Aspekte

die XAI-Methoden in nicht unerheblicher Weise beeinflussen und stellen ein Konzept der

Erklärbarkeit vor, das aus einer Literaturrecherche abgeleitet wurde, die Ideen aus ver-

schiedenen Disziplinen aufgreift und das Konzept der Abduktion als zentrales Element hat,

um besser zu verstehen, was der Begriff Erklärbarkeit aus einer Nutzer-zentrierten Sicht

bedeutet. Schlussendlich zeigen wir mit unserer Nutzerstudie, dass obwohl die Nachfrage

nach Erklärbarkeit als sehr hoch angesehen wird, große Lücken zwischen der Nutzung von

KI und der Anwendung von XAI-Methoden vorherrschen. Darüber hinaus wird erkenntlich,

dass es Unterschiede in der Art und Weise gibt, wie Erklärungen als zufriedenstellend
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angesehen werden, und dass die Nutzung von XAI-Metriken als Mittel zur Verbesserung

von Erklärungen fraglich ist.
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1. Introduction

Software systems are increasingly integrated into our daily lives with a seemingly ever-

increasing amount of complexity and requirements to fulfill. Additionally, integrating new

and exciting Artificial Intelligence (AI) methods and tools into these systems according to

stakeholders’ desires and needs forces today’s software developers to adopt a different kind

of thinking than they used to. Especially in areas where stakeholders, including regulatory

bodies, demand strict adherence to privacy and transparency requirements, the deployment

of Federated Learning (FL) to satisfy both requirements becomes interesting [100]. FL is an

AI paradigm proposed to preserve data privacy, allowing multiple parties to train a Machine

Learning (ML) model collaboratively without sharing their local data [132]. Such charac-

teristics are essential, where data shall remain local and not be distributed (e.g., patient

data in hospitals [180]). However, while recent literature already looks at FL with explain-

ability strictly algorithmically, it remains unclear how to approach it from a requirements

perspective, especially regarding the evaluation and comparison of explanations.

Furthermore, current research on explainability as a non-functional requirement is still

primarily limited in generating generally applicable concepts to understand explainabil-

ity [27]. Still lacking the necessary depth, definitions, and means for evaluating practical

consideration. This becomes troubling for developers seeking guidance on integrating

explainability into their FL system [32, 81].

Therefore – amongst others – this thesis will integrate explainability as a non-functional

requirement in the context of FL and empirically evaluate different measurements regarding

explanation methods, their explanations, and the FL context. This thesis aims to contribute

to a better understanding of explainability in the FL context based on empirically collected

and evaluated data. In parallel to the experimental aspect of this thesis, which is a bottom-

up approach, we also try to further analyze, conceptualize, and understand explainability

from a top-down perspective, based on a literature search encompassing multiple research

disciplines, to tackle the human side problem.

1



1. Introduction

1.1. Contribution

For this thesis, we plan to answer the following three research questions:

RQ1: How can explainability (specifically using XAI methods) be approached in FL

contexts?

RQ2: Can we improve existing explanation methods for the FL context?

RQ3: How can we approach the human side of the explainability problem with already

existing research knowledge?

Based on the research questions, we aim to investigate FL in conjunction with existing

explainability methods thoroughly. While we can not cover every subtopic that FL offers,

we can at least evaluate the most common and simplest one, the image classification task,

with the CIFAR-10 data set.

Therefore, to answer RQ1, we will conduct several experiments to understand how the FL

context can influence common Explainable Artificial Intelligence (XAI) metrics. Then, we

move to another type of question that is usually just glanced at or ignored in this context

but sets this thesis distinctively apart from other research, analyzing the impact of the effect

of predictive multiplicity. We will measure to which degree the explanations change by

repeatedly executing the same experiment. Lastly, for this research question, we will look

at how explanations are affected by security-related aspects, e.g., introducing Differential

Privacy (DP) and FL clients who misbehave.

We then reach RQ2, in which we consider optimization techniques to improve explanations

measurably. Our results are evaluated based on prevalent XAI metrics in the research

literature, and a user survey was conducted to verify that the proposed method holds

real-world merit.

Finally, for RQ3, we will investigate a concept of explainability derived from a literature

search that encompasses ideas from multiple disciplines to approach the human side of the

explanation problem. This research question became increasingly important while finding

answers for RQ1 and RQ2 because it was evident that the human component can not be

neglected when it comes to achieving explainability.

1.2. Outline

The thesis is structured as follows: In Chapter 2, we discuss fundamentals related to

explainability, FL, and XAI. Chapter 3 focuses on existing work on the subject matters

and relates them to the content of this thesis. In Chapter 4, we explore explainability in

the context of FL through various experiments. Some of our results from Chapter 4 are

then validated in our user survey in Chapter 5. In parallel, in Chapter 6, we investigate

explainability based on a multidisciplinary view and try to conceptualize explainability

2



1.2. Outline

with abduction from a top-down perspective. Finally, the thesis will be summarized, and

opportunities for further research will be presented in Chapter 7.
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2. Foundations

This chapter introduces the most essential concepts for the proposed thesis. Readers are

advised to see the presented topics as related to each other. The division into sections is

made for clarity purposes.

2.1. Explainability

No definitive, agreed-upon definition for explainability as a non-functional requirement

exists at the time of writing. However, multiple attempts have been made [27, 33, 37, 51,

52, 59, 109, 159, 163]. One particular helpful definition is presented by Kohl et al. [109] as

stated in the following:

Definition 1 (Explanation For): 𝐸 is an explanation of explanandum 𝑋 1
with

respect to aspect 𝑌 for target group𝐺 , in context𝐶 , if and only if the processing

of 𝐸 in context 𝐶 by any representative 𝑅 of 𝐺 makes 𝑅 understand 𝑋 with

respect to 𝑌 .

(Kohl et al. [109])

The authors define explanations as enabling understanding in a context and target-aware
fashion. They argue that by coupling the definition of an explanation to the concept

and mechanisms of human understanding, the research community can benefit from the

results already gathered in psychology and cognitive science. The additional constraints

placed by the context and target awareness are stated to be necessary because it is naturally

recognizable that not every explanation is appropriate in every context or by every targeted
explainee [24, 167].

They then proceed with defining an explainable system:

Definition 2 (Explainable System): A system 𝑆 is explainable by means𝑀 with

respect to aspect 𝑌 of an explanandum 𝑋 , for target group𝐺 in context𝐶 , if and

only if𝑀 is able to produce an 𝐸 in context 𝐶 such that 𝐸 is an explanation of 𝑋

with respect to 𝑌 , for 𝐺 in 𝐶 .

(Kohl et al. [109])

1
Sometimes the explananda is also called “phenomena” [163].
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2. Foundations

Here, the means 𝑀 is someone or something (which can be separated from the system)
2

that provides the explanation. The definition of the non-functional requirement is then

provided as follows:

Definition 3 (Explainability Requirement): A system 𝑆 must be explainable for

target group 𝐺 in context 𝐶 with respect to aspect 𝑌 of explanandum 𝑋 .

(Kohl et al. [109])

The requirement is defined as a specific quality of the system and, therefore, non-functional [77,

182]. The non-functional nature of this requirement can also be inferred because no specific

means 𝑀 , as stated in Definition 2, has been specified. Leaving the operationalization of

the explainability requirement as an open question that is additionally constrained by the

context and target awareness mentioned above.

2.1.1. Design

Explainability is not autotelic; a set of common overall goals can be identified. To this end,

the authors Ali et al. [5] provide a list of six goals
3
that an explainable system shall satisfy:

• Empower individuals to combat any harmful consequences that arise from the ex-

planandum 𝑋 4
.

• Assist individuals to make informed choices after receiving the explanation 𝐸.

• Expose the rationals behind the explanandum 𝑋 or possibly a lack of it.

• Enabling Integration of algorithms into systems 𝑆 in compliance with human values.

• Enhance satisfaction and confidence in system 𝑆 for target group 𝐺 .

• Enforce legal requirements (e.g., the Right of Explanation [163]).

The definition of these goals informs the design process for explainable systems. However, it

is not suited for the categorization thereof. For the categorization of explainable systems, the

authors in [16, 27, 163] proposed to separate explainable systems into levels of explainability
readiness. See Table 2.1 for reference.

The levels are categorized according to a rising amount of self-awareness and the capability

of providing explanations. At face value, such a categorization is more targeted for cyber-

physical, self-adaptive systems like robots that exert behavior to be explained and recognize

the need for explanation intelligently (at least level 2 onward systems). Furthermore, level 5

is explicitly highlighted. The concept of having multiple communicating feedback loops

2
If the explanation is part of the system 𝑆 , the system is called self-explainable [163].

3
The original phrasing has been changed to match the presented explainability definitions.

4
Some scholars argue that explanations should be risk-focused in nature [170], meaning to be able to assess

and weight the explanation provided by a system, against any risks in regard to the extent that users are

affected by the system in question.
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2.1. Explainability

Explainability Description

Level 1 No explainability

Level 2 Recognition of the need of explainability

Level 3 Local aspect explainability

Level 4 Global aspect explainability

Level 5 Communicated explainability

Table 2.1.: Levels of Explainability Readiness according to [27].

operating in a decentralized manner, and by that means carrying out the explainability, can

be mapped to Federated Learning (FL) which will be presented in the next section.

Another important consideration for the design of explainable systems is the often assumed
5

tradeoff between the Machine Learning (ML) model’s performance characteristics and

the explainability of the system [80, 135, 169]. Figure 2.1 shows the common inverse

relation assumption between the two system characteristics. Simpler ML models (e.g., linear

regression, decision trees) are generally considered inherently more interpretable and more

explainable. In contrast, complex ML models tend to be “black-boxes” in nature (e.g., Deep

Neural Networks (DNNs), ensemble methods).

Model Explainability

M
o
d
e
l
A
c
c
u
r
a
c
y

Figure 2.1.: Assumed Relation between Model Accuracy and Model Explainability [80].

2.1.2. Evaluation

Evaluation methods for explainability can be divided into three distinct sets of experiments:

(i) Application-grounded (end user experiments), (ii) Human-grounded (layperson experi-

ments), and (iii) Functional-grounded (objective measurements) [13, 29, 57, 142, 162]. The

list above is sorted in descending order of evaluation cost. Application-grounded evaluation

needs human participants who act as domain experts. This type of evaluation is the most

expensive but also the most beneficial in assessing a system’s explainability. By relaxing the

5
No empirical validation has been done to the author’s best knowledge, and research suggests some

doubts [188].
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domain expert requirement to laypersons as subjects for the experiments, Human-grounded

evaluations are more affordable than Application-grounded ones. However, the validity is

generally decreased compared to the domain-specific feedback provided by the Application-

grounded evaluation. This decrease is also partly due to task simplification because domain

knowledge can not be assumed from participants. Lastly, in Functional-grounded exper-

iments, no human participation is required. Instead, the explainability of the system in

question is assessed through various metrics that can be computed. On the one hand, this

approach is the least costly in terms of human resources needed for the evaluation, but on

the other, it can come at the risk of providing low validity. The reason for this is that the

computed metrics might not be able to assess the true explainability of the system. Real

explainability can only be assessed by humans (see Section 2.1), and computed metrics are

assumed proxies that can be ill-defined. However, while the explainability assessment of the

system itself is difficult with functional-grounded experiments, evaluating and comparing

explanations 𝐸 provided by a means𝑀 is still possible.

To quantify the fulfillment of an Explanation requirement, the authors Bersani et al. [16]

propose the following formula:

𝑄𝐸 (𝑀) ≥ 𝜖 (3)

The means𝑀 of an explanation 𝐸 is evaluated by a quality function 𝑄𝐸 and must be greater

or equal to a predefined threshold 𝜖 ∈ R+ to fulfill the Explanation requirement. It is

important to note that the function𝑄𝐸 is dependent on the context𝐶 , the stakeholder group

𝐺 , and the targeted level of explainability readiness as presented in Section 2.1.1. As an

example instantiation for 𝑄𝐸 , a 5-point Likert Scale is suggested. If multiple explanations

can be generated and evaluated, they propose calculating the variance 𝜎 and restricting it

by a certain threshold. The proposed formula notation style will allow us to further specify

the Explanation requirements in Chapter 4.

A number of different metrics has been proposed to evaluate and compare different explana-

tions [3, 21, 43, 83, 84, 86, 97, 102, 141, 162, 198]
6
. These metrics are shown in the following

Table 2.2. The metrics in Table 2.2 are meant as an overview rather than a complete, detailed

list. For example, Robustness can be expressed through various sub-metrics [83]. However,

as the literature points out (see Definition 2.1.1), Metrics can be deceptive.

Definition 2.1.1 (Quantitative fallacy) “A [false] criterion of significance which assumes
that facts are important in proportion to their susceptibility to quantification.” [72].

One particular troubling aspect of this thesis is the Rashomon Effect
7
(see Definition 2.1.2).

A brief introduction is given below. The Rashomon Effect will be further discussed in more

detail in Chapter 4.

Definition 2.1.2 (The Rashomon Effect) “What I call the Rashomon Effect is that there is
often a multitude of different descriptions [equations 𝑓 (𝑥)] in a class of functions giving about
the same minimum error rate.” [23].
6
See also https://github.com/understandable-machine-intelligence-lab/Quantus.

7
Also known as predictive multiplicity in classification tasks [30, 87, 88].

8

https://github.com/understandable-machine-intelligence-lab/Quantus


2.1. Explainability

Metric(s) Description

Robustness / Stability Measures the degree to which an explanation is stable when subject to slight

perturbations of the input, assuming the output approximately stays the same.

Computational Cost Measures the cost to generate the explanation.

Faithfulness / Fidelity / Completeness Measures the degree to which an explanation follows the prediction behavior of

the model.

Localization Tests if the explainable evidence is centered around a region of interest.

Complexity Measures the complexity of the explanation or model.

Randomization Measures to what extent the explanations deteriorate as model parameters are

increasingly randomized.

Understandability Measures the degree to which an explanation is understandable.

Consistency / Identity Measures the degree to which two similar model instances differ in their explana-

tion.

Separability Measures the degree to which two nonidentical model instances differ in their

explanation.

Monotonicity Measures the monotonically increase in model performance by incrementally

adding features according to their importance.

ROAR Measures the accurarcy drop when retraining the ML model with the most relevant

features removed.

Top-k Feature (dis)-agreement Measures the number of agreed upon most (un)-important top k features.

Correlation coefficient Measures the correlation between different metrics.

Prediction Gap on Important feature met-

ric (PGI)

Measures the prediction faithfulness by calculating the average error of the predic-

tion with only the 𝑘 most important features.

Local Lipschitz continuity Measures the stability of local explanations by comparing local explanations at a

data point of interest against each other.

Cohen’s Kappa Coefficient (𝐾 ) Measures the level of agreement between two annotators on a classification prob-

lem [42].

Kendall Rank Correlation Coefficient (𝜏 ) Measures the ranking correlation of two independent rankings [105].

Spearman’s Rank Correlation Coefficient

(𝜌 )
Measures the ranking correlation of two independent ranking by how well they

follow a monotonic relationship [171].

Weighted Cosine Similarity Measures the similarity between vectors accounting for randomness of unimpor-

tant feature rankings [151].

Structural Similarity Index Measures the similarity between images [185].

Normalized Mutual Information Measures the correlation between two images [175].

Table 2.2.: Metrics for Explanations.

First formalized for predictive models in 2001 [23], the Rashomon Effect states that many

models may exist for a given data set with equally well-performing but different internal

solution strategies [139]. This effect directly affects Explainable Artificial Intelligence (XAI)

methods because the explanations itself can differ under it. At the same time, the ML models

are seemingly unchanged — at least based on performance metrics like accuracy — giving

the user a sense of false security. The Rashomon Effect becomes especially troubling when

users are involved because stability regarding explanations is considered mandatory to

establish trust [139]. At worst, the Rashomon Effect can lead to explanations that contradict

9



2. Foundations

each other [136]. The set of ML models affected by the Rashomon Effect can be defined as

the Rashomon Set (see Definition 2.1.3). The Rashomon Set’s size depends on 𝜖𝑅 , which

controls which ML models are considered equally well-performing.

Definition 2.1.3 (Rashomon Set) For a given ML model 𝑓𝑅 ∈ 𝐹 , where 𝐹 denotes the Hy-
pothesis space, L a loss function, the Rashomon parameter 𝜖𝑅 > 0. The Rashomon Set can be
defined as: 𝑅L,𝜖𝑅 = {𝑓 ∈ 𝐹 | E[L(𝑓 )] ≤ E[L(𝑓𝑅)] + 𝜖𝑅} [30].

Calculating the Rashomon Set is an NP-hard problem and computationally infeasible for

non-complex ML tasks [41, 56, 108, 121, 189]. Additionally, one can define the following

three metrics to measure the severity of the Rashomon Effect [30].

𝛼𝜖𝑅 (𝑓𝑅) =
1

𝑛

𝑛∑︁
𝑖=1

max

𝑓 ∈𝑅L,𝜖𝑅 (𝑓𝑅)
1[𝑓 (𝑥𝑖 ≠ 𝑓𝑅 (𝑥𝑖))]

𝛿𝜖𝑅 (𝑓𝑅) = max

𝑓 ∈𝑅L,𝜖𝑅 (𝑓𝑅)

1

𝑛

𝑛∑︁
𝑖=1

1[𝑓 (𝑥𝑖) ≠ 𝑓𝑅 (𝑥𝑖)]

𝛾𝜖𝑅 (𝑓𝑅) =
1

𝑛

𝑛∑︁
𝑖=1

1

|𝑅L,𝜖𝑅 (𝑓𝑅) |
∑︁

𝑓 ∈𝑅L,𝜖𝑅 (𝑓𝑅)
1[𝑓 (𝑥𝑖) ≠ 𝑓𝑅 (𝑥𝑖)]

𝛼𝜖𝑅 is called the Ambiguity metric and measures the existence of conflicting predictions

produced by the functions in a Rashomon Set, compared to the reference function 𝑓𝑅 . The

predictions are drawn from 𝑛 observations in the input space. In the same manner, one can

define Discrepancy 𝛿𝜖𝑅 , which measures the maximum ratio of conflicting predictions that

arise from comparing the reference function to functions in the Rashomon Set, again sampled

by 𝑛 observations. Lastly, one can define Obscurity 𝛾𝜖𝑅 , which measures the average ratios

of conflicting prediction between the reference function and functions in the Rashomon

Set [30].

2.2. Federated Learning

As stated in Chapter 1, FL is an Artificial Intelligence (AI) paradigm proposed by McMahan

et al. in 2016 to train an ML model in a decentralized fashion [132]. Since then, research

regarding FL gained much attraction, especially in the medical field, as a means to train

ML models by multiple participants without sharing local – and potentially sensitive –

data (in contrast to training a centralized ML model that relies on the data availability

of all participants for training). So, instead of moving the data to the computation, the

computation is moved to the data. A key distinguishing factor from distributed optimization

in traditional machine learning is the high degree of system and statistical heterogeneity in

FL systems [132].
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2.2.1. Process

The general algorithm regarding any FL architecture can be summarized as seen in Algo-

rithm 1.

Algorithm 1 Generalized FL algorithm

1: Φ0 ← initialize global ML model

2: 𝑖 ← 0

3: while Φ𝑖 is not converged do
4: Γ𝑖

𝑘
← send global ML model Φ𝑖 to 𝑘 local nodes

5: Γ𝑖+1
𝑘
← train local ML model Γ𝑖

𝑘
on local dataset 𝐷𝑘

6: Φ𝑖+1 ← aggregate ML model updates Γ𝑖+1
𝑘

from each client 𝑘

7: 𝑖 ← 𝑖 + 1
8: end while

After the initialization of a global ML model Φ, Φ is sent to every participating client 𝑘 of

the federation. Each client 𝑘 then trains a local ML model Γ𝑘 on their respective data 𝐷𝑘 .

Then, each client sends their new ML model updates back, and an aggregation operation is

performed to combine the different ML model updates to calculate a new global ML model.

This procedure repeats itself till the global ML model Φ converges. Figure 2.2 visualizes the

Algorithm.

𝐷1 𝐷2
... 𝐷𝑘

𝜔Γ1

𝜔Γ2

𝜔Γ3

Γ1(𝑥) Γ2(𝑥) Γ𝑘 (𝑥)

•

Φ(𝑥)
𝜔Φ

𝜔Φ 𝜔Φ

Figure 2.2.: Visualization of the fl Algorithm 1.

2.2.2. Algorithms

Since [132]’s initial proposal with the Federated Averaging (FedAvg) algorithm, the research

literature has produced hundreds of different FL algorithms, often adapted for specific tasks

or desirable properties. For this thesis, however, we will limit the scope of FL algorithms to a

11



2. Foundations

selection of implementations already provided by the FL framework Flower in version 1.13.0

(see Table 2.3). Additionally, in the Appendix Figure A.3 a sequence diagramm showing the

execution of FL strategys in Flower is shown.

Name Reference

FedSGD [132]

FedAvg [132]

FedProx [123]

FedOpt [153]

FedAvgM [89]

Krum [19]

FedTrimmedAvg [192]

FedMedian [17]

Table 2.3.: List of Selected FL Algorithms in Flower Version 1.14.0.

In Table 2.3 Federated Stochastic Gradient Descent (FedSGD), FedAvg, and FedProx are

the three most prominent FL algorithms, most often used as baselines algorithms. For this

reason, a summary will be given below. For the other algorithms, readers are directed to the

referenced papers or the code implementation provided by the Flower FL framework [17].

Algorithm 2 FedSGD [132]

Input: Number of participants 𝐾 indexed by 𝑘 , learning rate 𝜂, number of federated rounds

𝑇 , number of local data points 𝑛𝑘 by participant 𝑘 , number of total data points 𝑛, local

model Γ𝑘 (𝜔) of each client 𝑘 taking model weights 𝜔

1: initialize 𝜔0 randomly

2: for 𝑡 = 0 to 𝑇 do
3: for all participants 𝑘 ∈ {1, . . . , 𝐾} do
4: 𝑔𝑘 ← ∇Γ𝑘 (𝜔𝑡 )
5: end for
6: 𝜔𝑡+1 ← 𝜔𝑡 − 𝜂

∑𝐾
𝑘=1

𝑛𝑘
𝑛
𝑔𝑘

7: end for

The FedSGD algorithm shown in Algorithm 2 is the most basic algorithm for mapping the

Stochastic Gradient Descent (SDG) algorithm into a FL setting with FL clients and a central

server for coordination. First, a random parameterization for the model weights𝜔0 is chosen

by the central server. Then, for the number of global FL rounds 𝑇 , the local gradient is

computed for each participant’s local model Γ𝑘 (𝜔𝑡 ) with the current model weights 𝜔𝑡 of

round 𝑡 . At the end of each federated round 𝑡 , the server calculates the new weights 𝜔𝑡+1 by
stochastic gradient descent with learning rate 𝜂 over the weighted sum of local gradients
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2.2. Federated Learning

𝑔𝑘 . The linear factors of the weighted sum are the number of local data points 𝑛𝑘 seen by

participant 𝑘 divided by the total number of data points 𝑛 of all participants.

While FedSGD does work, it produces a high communication overhead because each client

computes only one step of the gradient descent locally before the central server performs the

aggregation. By introducing three new parameters: 𝐶 , the fraction of clients that perform

computation on each federated round 𝑡 , 𝐸, the number of local computation rounds; and B,

the local minibatch size used for the client updates, the authors McMahan et al. developed

the FedAvg algorithm [132].

Algorithm 3 FedAvg [132]

Input: Number of participants 𝐾 indexed by 𝑘 , fraction of number of clients 𝐶 , learning

rate 𝜂, number of federated rounds 𝑇 , number of local data points 𝑛𝑘 by participant 𝑘 ,

number of local epochs 𝐸, mini-batch size B, local data sets 𝐷𝑘 for client 𝑘

1: function ServerUpdate

2: initialize 𝜔0 randomly

3: for 𝑡 = 0 to 𝑇 do
4: 𝑚 ← max (𝐶 · 𝐾, 1)
5: 𝑆𝑡 ← {|m| clients randomly chosen}
6: for all participants 𝑘 ∈ 𝑆𝑡 do
7: 𝜔𝑘𝑡+1 ← ClientUpdate(𝑘,𝑤𝑡 )

8: end for
9: 𝑚𝑡 ←

∑
𝑘∈𝑆𝑡 𝑛𝑘

10: 𝜔𝑡+1 ←
∑
𝑘∈𝑆𝑡

𝑛𝑘
𝑚𝑡
𝜔𝑘𝑡+1

11: end for
12: end function

13: function ClientUpdate(𝑘,𝑤𝑡 )

14: 𝐵 ← {split 𝐷𝑘 into batches of size B}
15: for local epoch 𝑖 = 0 to 𝐸 do
16: for batch 𝑏 ∈ 𝐵 do
17: 𝜔 ← 𝜔 − 𝜂∇L(𝜔,𝑏)
18: end for
19: end for
20: return 𝜔
21: end function

The FedAvg algorithm is shown in Algorithm 3. Here, we can see that each client performs

multiple local gradient descent steps in the function ClientUpdate(𝑘,𝑤𝑡 ) over mini-batches

of size B. L is the loss function for the local model prediction. It should be noted that by

setting 𝐸 = 1 and B =∞, FedAvg equals FedSGD. While FedAvg reduces communication

overhead, the convergence on non-independent and identically distributed (non-IID) data is

much slower than FedSGD [199]. The reason for this is that the locally computed model

weights in ClientUpdate(𝑘,𝑤𝑡 ) will diverge more on non-IID data the more local epochs
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are performed. This leads to a slower convergence of the averaging calculation performed

by the central server (see Line 10).

Algorithm 4 FedProx [123]

Input: Number of participants𝐾 indexed by𝑘 , number of federated rounds𝑇 , 𝑝𝑘 probability

to choose client 𝑘 , 𝜇 scaling factor for proximal term, 𝛾 𝑡
𝑘
measurement how much local

computation is performed by client 𝑘 in round 𝑡

1: function ServerUpdate

2: initialize 𝜔0 randomly

3: for 𝑡 = 0 to 𝑇 do
4: 𝑆𝑡 ← {|𝑚 | clients randomly chosen with probability 𝑝𝑘}
5: for all participants 𝑘 ∈ 𝑆𝑡 do
6: 𝜔𝑘𝑡+1 ← ClientUpdate(𝑘,𝑤𝑡 )

7: end for
8: 𝜔𝑡+1 ← 1

𝐾

∑
𝑘∈𝑆𝑡 𝜔

𝑘
𝑡+1

9: end for
10: end function

11: function ClientUpdate(𝑘,𝑤𝑡 )

12: 𝜔 ← Find 𝛾 𝑡
𝑘
-inexact solution (see Definition 2.2.1)

13: return 𝜔
14: end function

As an enhancement of the FedAvg algorithm in a more realistic FL setting with systems and

statistical heterogeneity applied, the authors Li et al. introduced the FedProx algorithm [123].

The core idea of the FedProx algorithm is to allow participants to perform variable amounts

of work locally across devices, via an added proximal term. This approach allows for more

robustness and stability – regarding the convergence – than FedAvg in heterogeneous

federated networks.

Definition 2.2.1 (𝛾 𝑡
𝑘
-inexact solution) Let ℎ𝑘 (𝜔,𝜔𝑡 ) = L𝑘 (𝜔) + 𝜇

2
∥𝜔 − 𝜔𝑡 ∥2, and 𝛾 𝑡𝑘 ∈

[0, 1] where L𝑘 is the local loss function of client 𝑘 . Then 𝜔∗ is a 𝛾 𝑡
𝑘
-inexact solution for client

𝑘 at round 𝑡 for min𝜔 ℎ𝑘 (𝜔,𝜔𝑡 ) if


∇ℎ𝑘 (𝜔,𝑤𝑡 )

 ≤ 𝛾 𝑡𝑘

∇ℎ𝑘 (𝜔𝑡 , 𝜔𝑡)

. Where ∇ℎ𝑘 (𝜔,𝜔𝑡 ) =

∇L𝑘 (𝜔) + 𝜇 (𝜔 − 𝜔𝑡 ) [123].

FedProx is shown in Algorithm 4. Notice the usage of the 𝛾 𝑡
𝑘
-inexact solution in Line 12.

By defining the local objective of client 𝑘 as ℎ𝑘 (𝜔,𝜔𝑡 ) = L(𝜔) + 𝜇

2
∥𝜔 − 𝜔𝑡 ∥2, the authors

added the proximal term mentioned above that controls how much local work is performed

by each client. The additional parameter 𝜇 acts as a penalization constant which can be

tuned to prevent divergence and improve stability [123]. In that sense, the local epoch

𝐸 of the FedAvg algorithm has been re-parameterized and made variable via 𝛾 𝑡
𝑘
(variable

epochs) and 𝜇 (variable update step size concerning the global model). Note that a smaller 𝛾 𝑡
𝑘

corresponds to a higher accuracy regarding the local solution and more local computation.

14



2.2. Federated Learning

Choosing the correct parameter for 𝜇 is difficult because a large 𝜇 forces the updates to be

closer to the weights of the global model which can slow down convergence, while a small

𝜇 can lead to convergence problems [123]. Therefore, 𝜇 is designed to be chosen adaptively

based on the model’s current performance.

2.2.3. Architectures

As of the state of writing, no agreed-upon overview of different FL architectures exists.

The authors of [180] present the most common ones found in the research literature.

They categorize the different architectures according to the data distribution, scalability,

and coordination mechanisms. One architecture over the other is selected according to

requirements or challenges related to data distribution, communication (e.g., volume), and

coordination. Each architecture shown here can utilize FL algorithms, as presented in

Section 2.2.2.

2.2.3.1. Data Distribution-based

As the name suggests, this type is concerned with the underlying distribution of data used

for training. Three types are distinguished. In a Horizontal FL architecture, clients share

a similar feature space but differ in the sample space. If the feature space differs but the

sample space is the same, it is called a Vertical FL architecture. If both feature space and

sample space differ, it is called a Federated Transfer Learning architecture
8
.

2.2.3.2. Scale-Driven

Here, architectures are divided according to the number of clients participating in the

federation. If only a limited number of clients participate with large data sets, the term Cross-

Silo FL is used. On the other hand, if lots of clients with small data sets are participating,

the term Cross-Device FL is used.

2.2.3.3. Coordination-based

These architecture types are divided by who coordinates the aggregation and ML model

updates. The coordination can be done either centralized (one party is responsible), decen-

tralized (no central authority exists, and participants coordinate themselves), or hierarchical

(local aggregators form a hierarchical multi-layered system architecture).

8
Because transfer learning mechanisms are applied [180].
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2.2.4. Evaluation

Federated evaluation is a sub-discipline in FL that intends to assess themodel at the client side

without sharing the data [73]. This usually involves the computation of model evaluation

metrics at the client side and aggregation at the server side. Federated evaluation is noted

here because this thesis will use it to evaluate explainability metrics (see 2.1.2) on the client

side with the FL framework Flower [17].

Table 2.4 shows a brief overview of metrics to evaluate the ML models [63, 65].

Metric Domain

𝑅2 = 1 −
∑

𝑖 (𝑦𝑖−𝑦∗𝑖 )2∑
𝑖 (𝑦𝑖−𝑦) [R]

𝑅𝑀𝑆𝐸 =

√︃∑
𝑖 (𝑦𝑖−𝑦∗ )2

𝑁
[R]

𝑄𝐸 =𝑚𝑒𝑑𝑖𝑎𝑛( | 𝑦𝑖−𝑦
∗
𝑖

𝑦𝑖
|) [R]

𝑀𝐴𝐸 =

∑
𝑖 |𝑦𝑖−𝑦∗𝑖 |
𝑁

[R]

𝑀𝑆𝐸 =

∑
𝑖 (𝑦𝑖−𝑦∗𝑖 )2

𝑁
[R]

𝑀𝐴𝑃𝐸 =

∑
𝑖 |𝑦𝑖−𝑦∗𝑖 |
𝑁

[R]

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 [C]

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 [C]

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 [C]

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁 [C]

𝐴𝑈𝑅𝑂𝐶 = Area under the ROC Curve [C]

Table 2.4.: Metrics for Evaluating ML Models. Legend: [R] Regression, [C] Classification.

For clarification, 𝑦𝑖 denotes the prediction of the ML model of feature 𝑖 while 𝑦∗𝑖 denotes
the ground truth of feature 𝑖 . Furthermore, 𝑁 denotes the total number of samples in the

validation data set. 𝑇𝑃 ,𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁 stands for True positive, True negative, False positive,
and False negative, respectively. True/False answers whether a class has been correctly

classified, while the later part specifies the class. These concepts are related to Confusion

Matrices.
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2.2.5. Challenges

FL is still a relatively recent concept. Therefore, some challenges still need to be solved [122].

These are:

• Expensive Communication: Model update information needs to be transferred in

each round of the FL algorithm. This can be impractical in settings where low-power

Internet of Things (IoT) devices are used or network resources are limited.

• System heterogeneity: It is difficult to account for the heterogeneity of systems

participating in the federation. This aspect is not only limited to the computational

power of the participant but also includes other aspects like storage, communication

capabilities, electric power usage, availability, or trustworthiness. There are also

challenges regarding straggler mitigation and fault tolerance [123].

• Statistical heterogeneity: The differences in each client’s local data set can vary

widely. This problem is also known as non-IID data and is especially difficult in FL

because it leads to the weights diverging too much from each other so that the global

model can not converge [196].

• Privacy Concerns: This challenge relates to the possibility of other participants

manipulating the global model (e.g., by poisoning attacks) or extracting sensitive

information.

2.3. Explainable Artificial Intelligence (XAI)

Given the success of ever-more-complex ML models — even surpassing human abilities — it

is unsurprising that a strong push exists to deploy these ML models in sensitive contexts

where trust-related problems occur. To tackle these problems, a new branch of research has

emerged that focuses on the interpretability and explainability of AI, namely XAI. While

“interpretability” and “explainability” are often used synonymously, there is a solid case to

be made to distinguish these two.

• Interpretability: This is the concern to which a human can understand the reason

for a decision by simple observation [146]. In that sense, “interpretability” is a passive

attribute.

• Explainability: On the other hand — as stated in Section 2.1 — can be seen as “the

currency in which beliefs are exchanged” [146]. This definition matches the “enabling

understanding” concept presented in the abovementioned section. In that sense, it is

an active element of the system.

While XAI methods can be taxonomized in different ways, this proposal uses the taxonomy

from Speith [172]. For this thesis, only post-hoc (after the model is trained) model-agnostic

(applicable for every ML model) methods are relevant. Most prominently known are

Local Interpretable Model Agnostic Explanation (LIME) and SHapley Additive exPlanations
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(SHAP) [146, 154]. These twomethods will be briefly described in the following. Additionally,

explainability methods are divided into local and global explanations (see Definition 2.3.1

and 2.3.2)
9
. While local explanations generate explanations for individual instances of the

ML model, global explanations reason about the ML model holistically. However, global

explanations are usually more computationally expensive (see Subsection 2.3.2).

Definition 2.3.1 (Local Explanation) Let ®𝑥 ∈ 𝐷 be a concrete instance of a data point for
an ML model 𝑓 : 𝐷 → 𝑌 and 𝑓 ( ®𝑥) = ®𝑦. Further let 𝑣𝑖𝑐 ®𝑥,𝜖𝐷 (𝐷) ∈ 𝐷 be defined as the confined
area around ®𝑥 limited with parameter 𝜖𝑥 and 𝑣𝑖𝑐 ®𝑦,𝜖𝑌 (𝑌 ) the confined area around ®𝑦 limited
by 𝜖𝑌 accordingly. A local explanation 𝐸𝐿𝑜𝑐𝑎𝑙 is then defined as a valid Explanation as stated
in Definition 1 of Section 2.1 where the explanandum 𝑋 is additionally locally confined such
that only 𝑓 ( ®𝑥 + ®𝛿𝑥 ) = ®𝑦 + ®𝛿𝑦 with ®𝛿𝑥 ∈ 𝑣𝑖𝑐 ®𝑥,𝜖𝐷 (𝐷) and ®𝛿𝑦 ∈ 𝑣𝑖𝑐 ®𝑦,𝜖𝑌 (𝑌 ) are considered for the
explanation.

Definition 2.3.2 (Global Explanation) A global explanation can be defined in concordance
with local explanations. However, any global explanation must consider all (or at least approx-
imate all) possible ®𝛿𝑥 ∈ 𝑣𝑖𝑐 ®𝑥,𝜖𝐷 (𝐷) and ®𝛿𝑦 ∈ 𝑣𝑖𝑐 ®𝑦,𝜖𝑌 (𝑌 ) where 𝜖𝐷 , 𝜖𝑌 →∞. This way, the local
confinement of the explanandum 𝑋 is lifted, and a holistic approach enforced.

2.3.1. Local Interpretable Model Agnostic Explanation (LIME)

LIME is an algorithm that tries to fit a local interpretable ML model — a surrogate – around a

data point of interest. The fitted ML model shall approximate the predictions of the original

ML model in that local area. LIME first creates a neighborhood of synthetic samples around

the data point in question via perturbing values in the feature vector of that data point.

Then, these synthetic samples are weighted via a weighting kernel, which measures the

distance to the original data point. Finally, the synthetic samples are fed into the original

ML model to generate output values, thus having everything needed to fit a local surrogate

model [146, 154].

𝜉 (𝑥) = argmin

𝑔∈𝐺
L(𝑓 , 𝑔, 𝜋𝑥 ) + Ω(𝑔) (1)

Formally speaking (see equation 1), let 𝑥 be the data point in question, 𝑓 the original ML

model, 𝐺 a set of potentially interpretable models, L be the approximation error of the

fitted model 𝑔, and 𝜋𝑥 the weighted kernel centered around 𝑥 . LIME then tries to fit a model

𝑔 from 𝐺 that minimizes the approximation error L and a complexity penalization term

Ω(𝑔). The local interpretable model 𝑔 can then be used for local explanations.

9
Some scholars argue for an additional middle ground called Cohort Explanations [134].
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2.3.2. SHapley Additive exPlanations (SHAP)

While LIME computes only local explanations, SHAP can compute both local and global

explanations. The general concept is derived from game theory, where Shapley values
10
are

a way to distribute the total gains of a cooperative game fairly among players according to

their contribution. Formally speaking, a Shapley value is the average value of the marginal

contribution of a player over all possible coalitions. This theory inspired the authors in [128]

to use this concept to produce a new XAI method called SHAP. In their paper, Shapley

values are used to explain feature attribution. Feature attribution measures how much a

specific feature contributes to the resulting prediction.

𝑔(𝑧′) = 𝜙0 +
𝑀∑︁
𝑖=1

𝜙𝑖𝑧
′
𝑖 (2)

Equation (2) shows the gist of this concept. Here 𝑧′ ∈ {0, 1}𝑀 is the so-called simplified

input feature vector (whether a feature is present or not), 𝜙𝑖 is the Shapley value for the

feature 𝑖 . This sum shall be approximately equal to the predicted value of the original ML

model. Therefore, the original ML model prediction can be expressed as the individual

contribution of each feature. However, in practice, the calculation of every possible coalition

(2
𝑛
, where 𝑛 is the number of features) is computationally costly; therefore, the Shapley

Values are usually approximated [176]. For a global explanation, the average value from all

Shapley Values of all data instances are being used/approximated. Equation (3) shows the

formula for the calculation of the 𝑖-th Shapley value 𝜙𝑖 which is divided into three parts.

𝜙𝑖 =
1

|𝑁 |!
∑︁
𝑆⊆𝑁 \𝑖︸      ︷︷      ︸

average

(
|𝑆 |! ∗ (|𝑁 | − |𝑆 | − 1)!︸                     ︷︷                     ︸

weight

∗ [𝑣 (𝑆 ∪ 𝑖) − 𝑣 (𝑆)]︸               ︷︷               ︸
marginal contribution

)
(3)

The first part of the equation is the sum of all possible coalitions without the 𝑖-th feature
11

present divided by the number of all possible coalitions (|𝑁 |!). The weight term in the

summation is the product of the number of permutations without the 𝑖-th feature present

times the number of permutations of the complement thereof (𝑁 \ {𝑆 ∪ 𝑖}). The last part is
taking the difference of the value of the coalition with the 𝑖-th feature present 𝑣 (𝑆 ∪ 𝑖) and
the coalition without it 𝑣 (𝑆).

Figure 2.3 shows an example of the calculation of the Shapley values [25, 94, 106]. The

feature vector consists of three features {•, •, •}. Furthermore, all possible coalitions with

10
The theory of Shapley values contributed to †Lloyd S. Shapley winning 2012 the Nobel Prize in Economy.

11
Also called player.
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𝑣 (•, •, •) = 90 𝑣 (•, •) = 72 𝑣 (•, •) = 80 𝑣 (•) = 56 𝑣 (•, •) = 85 𝑣 (•) = 70

𝑣 (•) = 80 𝑣 ( ) = 0

Figure 2.3.: Example Calculation of Shapley Values.

and without the feature vector • are depicted in the Figure. Therefore, we can calculate the

Shapley value 𝜙• of said feature • with Equation (4).

𝜙• =
1

|{•, •, •}|!
∑︁

𝑆⊆{•,•,•}\{•}

(
|𝑆 |! ∗ (|{•, •, •}| − |𝑆 | − 1)! ∗ [𝑣 (𝑆 ∪ {•}) − 𝑣 (𝑆)]

)
(4)

𝜙• =
1

6

((
|{ }|! ∗ (|{•, •, •}| − |{ }| − 1)! ∗ [𝑣 ({•}) − 𝑣 ({ })]

)
+
(
|{•}|! ∗ (|{•, •, •}| − |{•}| − 1)! ∗ [𝑣 ({•, •}) − 𝑣 ({•})]

)
+
(
|{•}|! ∗ (|{•, •, •}| − |{•}| − 1)! ∗ [𝑣 ({•, •}) − 𝑣 ({•})]

)
+
(
|{•, •}|! ∗ (|{•, •, •}| − |{•, •}| − 1)! ∗ [𝑣 ({•, •, •}) − 𝑣 ({•, •})]

))
𝜙• =

1

6

((
2 ∗ [80 − 0]

)
+
(
1 ∗ [80 − 56]

)
+
(
1 ∗ [85 − 70]

)
+
(
2 ∗ [90 − 72]

))
= 39.16

The value 39.16 is the average marginal contribution of the feature •. For completeness of

the example, 𝜙• = 20.67 and 𝜙• = 30.17 respectively. Notice that the sum of the Shapley

values equals 𝑣 (•, •, •) = 90. However, one aspect that is still not clear is how to omit a

feature in the context of ML. For this, the authors [128] used the so-called Shapley Kernel.

This approach requires the definition of a background set 𝐵 with representative data points.

Then, the omitted feature is filled in with values of said representative data set while

the other features stay fixed. This way, synthetic samples are generated. At last, these

synthetic samples are fed into the ML model, and the average over all output values is

generated. The Shapley Kernel was the first method that has been proposed to approximate

the value function. However, there are many other methods available now for the efficient

computation of the value function
12
.

The Shapley value suffices the following properties if computed exactly [25, 146, 176]:

12https://shap.readthedocs.io/en/latest/api.html
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• Efficiency: All contributions are fairly redistributed among all features (no more, and

no less); see Equation (2).

• Symmetry: If two features contributed the same amount to all coalitions, they must

receive the same contribution.

• Linearity: If the value function 𝑣 can be presented as the sum of two distinct value

functions 𝑔, ℎ. Then, the Shapley values of the value function 𝑣 are equal to the sum

of the Shapley values of 𝑔 and ℎ.

• Missingness: If a feature 𝑖 does not contribute to any possible coalition, its Shapley

value must be 𝜙𝑖 = 0.

• Consistency: The value of a Shapley value 𝜙𝑖 can only increase if the value of 𝑖

increases, while the other values are fixed. This property implies monotonicity, e.g.,

𝜙𝑖 increases if 𝑖 increases.

• Affine Scale Invariance: The zero point of a feature and the units thereof do not

determine their contribution if the attribution (evaluation of the value function 𝑣) is

invariant by simultaneous affine transformation. If the ML model output does not

change when a feature is measured in meters or inches, then the Shapley value of said

feature must also stay the same.

2.3.3. Saliency Map

Saliency maps are one of the simplest forms of calculating the attribution that a pixel has on

the prediction of a ML model has. The idea behind saliency maps is: Given an image 𝐼 with

𝑚 ∗ 𝑛 pixels and a particular class 𝐶 , to calculate through backpropagation the derivative

– similar to fitting the model – of a weight vector 𝜔 with respect to the given class 𝐶 and

image 𝐼 [168]. Note that the actual class of the image can differ from class 𝐶 . The value of

the saliency map at position (𝑖, 𝑗) is then given as𝑀𝑖, 𝑗 = |𝜔ℎ(𝑖, 𝑗) | where ℎ(𝑖, 𝑗) is a mapping

function that points to the weight value that corresponds to the pixel at position (𝑖, 𝑗) of
the input image 𝐼 . In a multi-channel image, e.g., RGB, the channel with the highest weight

value gets selected.

2.3.4. Input X Gradient

This is also a straightforward method and is considered an improvement to saliency maps by

the authors Shrikumar et al. [166]. As the name suggests, the attribution gets calculated by

computing the gradient via backpropagation and then simply multiplying the input image

with it. The idea is that the gradient gives a sense of sensitivity because higher gradient

values at a particular input position indicates a higher relevance in the output.
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2.3.5. Integrated Gradients (IG)

The core idea is the calculation of the integral of gradients along the path of a baseline

value 𝑥′ to the input 𝑥 [177]. The concrete calculation – an approximation of the underlying

integral with𝑚 steps – is given in Equation (4).

𝐼𝐺𝑖 (𝑥) = (𝑥𝑖 − 𝑥′𝑖 ) ×
𝑚∑︁
𝑘=1

𝜕𝐹 (𝑥′ + 𝑘
𝑚
× (𝑥 − 𝑥′))
𝜕𝑥𝑖

× 1

𝑚
(4)

The baseline 𝑥′ is usually dependent on the given task. For example, the most common

baseline value in image classification is the black image because the input images are usually

normalized beforehand. Implementation-wise, 𝐼𝐺 is gradient calculation in a for loop for the

𝑖-th dimension. Additionally, 𝐼𝐺 is proven to suffice the implementation invariance axiom,

which states that if two networks produce the same output for all inputs, even with different

implementations, then the attribution method – here 𝐼𝐺 – shall produce the same result.

Furthermore, it suffices sensitivity in the sense that if input and baseline differ in only one

feature and produce different predictions, then the attribution of said feature can not be

zero [177].

2.3.6. Grad-CAM

Gradient-weighted Class Activation Mapping (Grad-CAM) is another technique to visualize

explanations for deep neural networks [164]. It is a generalization of the CAM algorithm

proposed in [197] that only applies to Convolutional Neural Network (CNN) architectures

that do not contain fully connected layers. Grad-CAM is also discriminative with respect to

a target class𝐶 , similar to Saliency maps. Since authors’ initial publication, many derivative

algorithms with additional properties have been proposed and implemented – most notably

HiResCAM and ScoreCAM
13
.

Grad-CAM
𝐶 = 𝑅𝑒𝐿𝑈

©­­­­­­­­­«
∑︁
𝑘

©­­­­­­­­«
1

𝑍

∑︁
𝑖

∑︁
𝑗︸      ︷︷      ︸

global average

∗ 𝜕𝑦𝐶

𝜕𝐴𝑘
𝑖, 𝑗︸︷︷︸

gradient

ª®®®®®®®®¬
∗𝐴𝑘

ª®®®®®®®®®¬
(5)

Equation (5) shows the classical Grad-CAM algorithm for a given class 𝐶 . Here, 𝐴𝑘 are the

activation values of a specific convolutional layer 𝑘 for a given image 𝐼 . The activation

values of the layer 𝑘 are then weighted with a global average pooling over the gradient

values at any given position (𝑖, 𝑗) of the activation layer 𝑘 – therefore, 𝑍 equals 𝑖 ∗ 𝑗 . This

13https://github.com/jacobgil/pytorch-grad-cam
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process is then repeated with other convolutional layers in the network, and the sum of the

values is fed into the 𝑅𝑒𝐿𝑈 function. In practice, Grad-CAM works well. However, there

are some reported cases where Grad-CAM does not correctly highlight the relevant parts of

a picture [58].
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3. Related Work

Research in explainability as a non-functional requirement suffers because scholars often

need to recognize it explicitly. Instead, papers often focus solely on algorithmic considera-

tions or very high level contemplation. Both approaches are undoubtedly valid. However,

they lack a pragmatic and holistic view of the subject, which will be elaborated on in the

following.

The most notable contributions that study explainability as a non-function requirement are

presented by the authors Deters, Speith, Köhl, and Chazette. In the papers [34, 35], surveys

were executed to determine what users consider advantages or disadvantages regarding

explainability as a non-functional requirement. Their results show a “double-edged sword”

effect: explainability can increase understanding and usability but also decrease them

by providing unnecessary explanations or hindering usage. The authors Deters, Droste,

and Schneider [51] present goal-oriented heuristics to assess if a software system fulfills

explainability as a non-functional requirement. These heuristics are ten questions that shall

be easy to use by software engineers and give them a “rule of thumbishness” to evaluate

whether the requirement is fulfilled or not. This line of research study — assessing the

explainability of a system— has recently been extended in [53] and [59]. In [53], they present

a quality model for explainability based on a systematic literature review comprising ten

aspects of explainability, 36 distinct criteria, and 35 associated metrics. Notably, the authors

in [33] summarized 57 quality aspects related to explainability, which were also based on a

systematic literature review. Both of them suggest the adoption of user-centered practices

to develop explainable systems [36, 53]. This approach has been further studied in [59]

via a user survey about explainability needs in everyday software. Regardless, while they

exhaustively list aspects and criteria, they do not present a thorough and practical analysis

thereof, making it hard to assess which criteria and metrics should be chosen and why. In

conclusion, the papers above – and comparable work from the authors in that regard – are

informing this thesis on a fundamental level. However, the operationalizing of explainability
as a non-functional requirement remains still unclear. Especially regarding the unique

constraints and considerations of the FL context that need to be accounted for.

Recently, researchers have tried to bridge the gap between different communities in the

research of explainability (e.g., machine learning, human-computer interaction, etc.). For

example, the authors Wang, Huang, and Yao proposed a roadmap with a guideline-like

approach [187]. However, while the core questions are clear and refreshingly concrete in

design, their application and methodology behind this approach are questionable. The prob-

lems arise primarily because of choosing the wrong abstraction level to tackle explainability,

which contradicts what we mean in this thesis when discussing explainability. For example,
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“How to explain?” is directly mapped via XAI methods to “What to explain?”. However, as

we shall see in the later part of the thesis, a mapping like this can only be possibly chosen

arbitrarily. Furthermore, the question “When to explain?” is reduced to a mere timing in a

project rather than a context.

The thesis has already utilized several basic building blocks of explainability, FL, and XAI

from various papers in Chapter 2. Instead of iterating over these papers again, readers

are directed to the chapter above. Most noteworthy is the Quantus Python Library [83]

which provides metrics for the evaluating explanations. The recent empirical evaluation

of the Rashomon Effect in the centralized training of ML models [139]. And lastly, the FL

framework Flower [17].

One system that claims to be explainable by design is presented in [91]. Here, a provenance-

based architecture is envisioned. Domain experts create templates that are automatically

filled out by the provenance of data. These templates are then instantiated at run-time

to produce explanations. While the architecture and mechanisms are interesting, they do

not apply to generating explanations of decisions made by ML models because only the

provenance of data can be queried to produce an explanation.

In the realm of FL, several algorithms have been proposed to tackle explainability in light

of XAI. This new field of research is, amongst others, motivated by the authors of [14] and

called Fed-XAI. However, most current research focuses on the algorithmic part and specific

experiments. For example, the authors in [61] compare the explanations of a fuzzy rule-

based ML model vs. SHAP-produced ones in a specific data set. Another paper is presented

by the same author in [60], where they tackle the problem of needing a representative

underlying data set for the SHAP explanation method in the context of FL. They propose to

utilize a fuzzy clustering method in the FL architecture to generate artificial samples and

produce a representative underlying data set. In the paper from [181], the authors compare

the FL explanation provided by SHAP to that of a centralized ML model approach in the

6G network slicing classification field. While all of the papers mentioned in this paragraph

have some degree of combination between FL and XAI in place, several aspects are not

considered:

• They do not account for different FL architectures, ML scenarios, or the challenges

described in 2.2.5.

• Comparisons are difficult because no common baseline is provided.

• The aspects of time, resource usage, trade-offs, and general practicability are omitted.

• The additional value the explanations provide is not further evaluated nor compared

to each other.

• It is unclear how the Rashomon Effect affects explanations.

For the above reasons, it is still hard to assess FL under the constraint of fulfilling explain-

ability as a non-functional requirement, which fosters the goals of this thesis and sets it

apart from the research literature presented above.
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In this Chapter, we will apply and experiment with FL in conjunction with XAI methods

and metrics. The goal is to grasp how different changeable context parameters affect the

explainability.

4.1. Goals and Questions (1)

We follow the Goal Question Metric (GQM) guideline described in [183] to establish a

well-defined research approach with the following five evaluation goals for this Chapter:

• EG1: Examine the difference between XAI metrics applied to the local ML models

and the global ML model.

– EG1.Q1 Are there measurable differences regarding XAI metrics?

– EG1.Q2: Are there measurable differences regarding the XAI metrics calculation

duration?

– EG1.Q3: Are there measurable differences regarding different FL algorithms and

data distributions?

• EG2: Examine the stability of different XAI methods.

– EG2.Q1: Which XAI methods are more stable than others?

• EG3: Examine the improvement of XAI metrics by applying explanation optimization.

– EG3.Q1: How does the explanation optimization compare to individual XAI

methods?

– EG3.Q2: How do different aggregation methods influence the explanation opti-

mization?

– EG3.Q3: Do our results align with those presented in the original paper?

– EG3.Q4: How are cost and performance related to the explanation optimization?

– EG3.Q5: Can the aggregation weights be reused for successive FL rounds?

• EG4: Examine the degradation of XAI metrics by applying Differential Privacy (DP).

– EG4.Q1: How much do XAI metrics degrade by applying DP?
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– EG4.Q2: How much does DP affect our explanation optimization approach?

• EG5: Examine the degradation of XAI metrics by clients that misbehave.

– EG5.Q1: How much do misbehaving FL clients affect XAI metrics?

Each evaluation goal is associated with an experiment in this Chapter (e.g., EG1 and Ex-

periment 1). The metrics for the questions are presented and evaluated in their respective

Section. Our GQM goals will be further extended in Chapter 5 when we conduct our user

survey and Chapter 6 when we reason about explainability from a human-centric point of

view.

4.2. Experiment Preliminaries

Based on two recent comparative analyses for FL frameworks [66, 155], Flower has been

selected to implement the experiments [17]. At the time of writing, Flower has ≈ 5.1𝑘

github stars. Furthermore, Flower provides extensive documentation with examples and has

an active development community. The most recent version to date is 1.13.1, released on

the 27. November 2024. While Flower is open-source, it is maintained by the Flower Labs

GmbH, which resides in Hamburg, Germany. Notably, Flower is ML framework agnostic,

platform independent, and can scale to thousands of FL participants.

Internally, Flower uses the Python Library Ray for task scheduling and execution
1
. In

a simulation, FL clients are created ephemerally. Ephemerally means that clients only

materialize when needed to execute a task and destroyed afterward. This way, resources

can be efficiently used. The execution tasks are controlled by Flower, which happens

(i) Self-managed (orchestration is done by Flower), (ii) Batchable (execution happens in

batches utilizing all available resources), and (iii) Resource-aware (allowing to define which

resources are made available to the execution). Figure 4.1 shows the central Flower classes.

In the flwrmodule, the ServerApp represents the central server in the FL context. ServerApp

utilizes a concrete Strategywhich implements several functions that will be called by Flower

during simulation. The functions will be presented in the following, a sequence diagramm

regarding the call sequence is given in the Appendix A.3.

• initialize_parameters(...): Is called first, and responsible to initialize the global

model that is going to be shared with the pariticpating FL clients.

• configure_fit(...): Then creates instructions for the participating FL clients that

will then be send to them. This function can be used to adapt client behavior (e.g.,

change number of local epochs executed by FL client).

• aggregate_fit(...): Is called after the clients execute their fitmethod. This function

can be used to aggregate metrics gathered directly after the local training of the FL

clients. Because of the flexibility from Flower, it does not presume what metrics a

1https://www.ray.io

28

https://www.ray.io


4.2. Experiment Preliminaries

flwr_datasetsflwr

...LinearPartitionerIidPartitioner

PartitionerServerApp ClientApp

Client

+ evaluate (...)
+ fit (...)
+ get_parameters (...)

...

FedProx

FedAvg

Strategy

+ aggregate_evaluate (...)
+ aggregate_fit (...)
+ configure_evaluate (...)
+ configure_fit (...)
+ evaluate (...)
+ initialize_parameters (...)

Figure 4.1.: Most Important Flower Classes.

FL client computes (except for the loss). Hence, the developer needs to provide the

concret implementation.

• evaluate(...): Method that evaluates the global model.

• configure_evaluate(...): Will be called before the FL clients start their evaluation.

Can be used to adapt the client behavior for their local model evaluation.

• aggregate_evaluate(...): Method that aggregates the results from FL clients after

their local evaluation. Again, Flower does not presume any evaluation metrics, hence

an implementation must be provided if one desires to aggregate evaluation results.

On the client side, the following functions must be implemented by a Client:

• fit(...): Trains the local model and returns the new parameters, as well as perfor-

mance metrics.

• get_parameters(...): Implements the functionality to retrieve the local model pa-

rameters.

• evaluate(...): Evaluates the local model against a validation sets and returns perfor-

mance metrics.

It should be stressed out because of the ephemerally design of Flower, the ServerApp and

ClientApp create and destroy their Strategy or respectively Client instances during the

simulation. Hence, any form of state management needs to be conducted explicitly. Flower

does provide the necessary means via configuration injection mechanisms which is more

explained in detail in the official documentation. Lastly, we also have the flwr_datasets

module that provides the implementation for managing federated data sets. These federated

data sets are wrapped by a Partitioner which as the name suggests, partitions the dataset

among the FL clients. This module provides several concrete classes like IidPartitioner

which distributes the data evenly among the FL clients, or the LinearPartitioner which
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4. Explainability and Federated Learning

distributes the data linearly according to the FL client partition-id which is assigned at

the beginning of the simulation.

4.2.1. Datasets

We conducted all of our expirements on the following commonly used data set [26, 87, 120,

123, 127]:

• CIFAR-10: Contains (32×32×3) images of ten different classes. The data set is com-

prised of a total of 70,000 images. The task is to classify the images correctly [115].

4.2.2. Implementation

The implementation is provided under the MIT License via the following GitLab Repository:

https://gitlab.kit.edu/Nicolas.Schuler/fl. Apart from the FL framework Flower[17],

we used PyTorch[12], Captum[110], grad-cam[76], SHAP[128], and Quantus[11] for the

evaluation of different metrics and attribution methods. For most of our experiments, we

utilized the EfficientNetV2-S[179] provided by PyTorch, which was chosen because of the

fairly good performance in the image classification task at hand and the rather small memory

footprint and training time[179]. We only modified the model’s last layer to match with the

number of classes in the respective data sets. During the experiments, it became evident

that the simulation engine provided by Flower does have problems regarding memory

leakages for CPU RAM and GPU VRAM. Therefore, we reimplemented the simulation

engine, which now supports two different backends. The first backend uses the ray library
2

and ray tasks to execute the FL clients. Based on our testing, this backend is faster and

more memory efficient than Flower’s simulation engine – which often crashed because of

out-of-memory errors
3
. The second backend uses Python’s standard ProcessPool executor.

This implementation does not rely on ray and uses shared memory to exchange parameters

between processes. It is not as fast as the ray backend but is more lightweight and generally

has a lower continuous CPU RAM usage profile. The process-pool backend also supports a

locking mechanism for the training process of FL clients so that only a certain number of FL

clients can execute the training process in parallel. Locking is beneficial because the training

of the ML model is usually the most GPU-intensive operation that will be performed. We

also include a CLI interface – called fl – for running the simulations and the ability to

dynamically change simulation parameters at the beginning of the simulation.

In terms of the performance of the FL simulation, we also noticed that parallelization is

strongly limited by the FL loop (see Algorithm 1 in Section 2.2), which requires synchroniza-

tion between the FL clients and the FL server. Additionally, any server-side-computation,

e.g., aggregation or evaluation, will introduce an additional delay before the FL clients can

2https://github.com/ray-project/ray
3
Some of our findings are also described in this pull request https://github.com/adap/flower/pull/3989.
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4.3. Experiment 1: Local or Global Model?

proceed with computations. This behavior significantly reduced our experiments’ through-

put and parallelization capability, even with added computational resources. We can elevate

the problem by selecting only a fraction of the FL clients for further task proceedings. How-

ever, this will inevitably lead to a decrease in model convergence because only a fraction of

the information is available.

4.3. Experiment 1: Local or Global Model?

In the first series of experiments, we were interested in empirically establishing which

ML model should be used for the explanation generation
4
. While in the contemporary

research literature, there is a consensus that the global ML model performs better than the

clients’ ML model, this assumption has not necessarily proven to be the case regarding the

performance of XAI methods. Therefore, we first had to verify that this was the case. In

addition, during our research efforts on FL, we saw a strong emphasis being placed on the

employed FL algorithms to achieve ever-better performance in terms of accuracy. However,

it is unclear how much the FL algorithm affects XAI methods or if other factors are more

crucial in producing “good” explanations. Lastly, having proven that only the global ML

model is relevant in terms of XAI performance will have considerable implications in the

practical application of XAI methods in conjunction with FL. Having the ability to offload the

explanation-generating process to a usually more powerful FL server instances will reduce

computational stress on the FL clients and facilitate the usage of parallelization patterns to

XAI applications. Due to the immense computational overhead that the generation process

for explanations as well as the evaluation of XAI metrics takes, we have only used one XAI

method – Saliency Maps (see Subsection 2.3.3) – that is coincidently also one of the fastest

methods available that works on the image classification task at hand.

To test our hypothesis, we tested different FL algorithms (see Table 2.3) with ten FL clients in

combinations with different data partitioning schemes provided by the flower-datasets5

library. The following partition schemes were evaluated: (i) independent and identically

distributed (IID), (ii) Dirichlet (𝛼 = 0.1) [90], (iii) linear, (iv) square, and (v) exponential. The

partition an individual client gets is computed based on the respective client-id assigned

at the beginning of the FL simulation. The ML model used was the above-mentioned

modified EfficientNetV2-S on the CIFAR-10 data set. The concrete hyperparameters for the

FL algorithms and the ML model are listed in the Appendix Table A.2. For a general sense

of the model performance regarding explanation stability; we derived a new type of metric

which is described in the following.

Definition 4.3.1 (Round-to-Round Metric) One can compute a round-per-round metric
for FL that either calculates a metric for the current FL round or, to the last FL round, effectively
comparing the performance of one FL round with the targeted one. For our experiments,

4
Because of the volume of the data we gathered, only an excerpt will be shown. The experiment data and its

analysis can be found in our GitLab repository.

5https://github.com/adap/flower/tree/main/datasets
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Figure 4.2.: Duration for Metric Calculations. [Left] Client 0, [Right] Global

we employed this technique to calculate metrics comparing the intra-performance of local
and global model explanations between consecutive rounds and against the last round, and
their inter-performance (e.g., comparing current local performance against current global
performance). The metrics that we employed are prevalent, and can be easily computed and
compared against each other: (i) Mean Squared Error (MSE), (ii) Normalized Mean Squared
Error (NMSE), (iii) Structural Similarity Index Measure (SSIM) [185], (iv) Normalized Mutual
Information (NMI) [175], (v) Wasserstein Distance, (vi) Peak Signal-to-Noise Ratio (PSNR),
(vii) Universal Image Quality Index (UIQ) [186] (viii) Spectral Angle Mapper (SAM) [194],
(ix) Signal to Reconstruction Error Ratio (SRE) [117], (x) Pearson’s Correlation Coefficient
(PEAR) [149], (xi) Spearman’s Rank Correlation Coefficient (SPEAR) [171], (xii) Kendall’s Rank
Correlation Coefficient (TAU) [105], and (xiii) Cosine Similarity.

In addition to the round-to-round metrics, we also computed different XAI metrics which

were selected based on their perceived usefulness at the beginning of our experiments.

Figure 4.2 shows a boxplot of how long each metric takes to compute. We usually did not

deviate from the default values of each metric, but for reproducibility the initialization of

the metrics can be found in our above-mentioned GitLab repository.

Notably, some metrics on the client side took longer to compute than on the server side,

and the spread is more significant. The reason is that FL clients work in parallel and,

therefore, potentially compete against resources in the simulation. In contrast, the FL server

execution happens in serial, according to Flowers’ standard programming paradigm and

API design. Also, FL clients have additional overhead due to parameter sharing between

different processes over shared memory. Based on these results, we see that the Model

Parameter Randomization (MPRT) metric [2] is the definitively most expensive one because

each layer of the ML model will be randomized, and measurements will be taken. Then,

six metrics fall in the region of ≈ 10 − 35 sec, with the faithfulness estimate metric as the

most significant [6]. Interestingly, nearly all these metrics are perturbation-based except

the Insert Area Under Curve (IAUC) [156] metric, which iteratively adds pixels according
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4.3. Experiment 1: Local or Global Model?

(a) Dirichlet 𝛼 = 0.1 (b) IID (c) Linear (d) Square (e) Exponential

Figure 4.3.: Showing the Influence of Data Partitioning on Accuracy (FedAvg).

Figure 4.4.: Round-to-Round Metric comparing Client [red] and Global [blue] Attribution of Round

𝑇 against Round 𝑇 − 1 (FedAvg/IID).

to a decreasing importance score of the explanation into a blank image. The rest of the

metrics are near or under 5 sec. For reference, the explanation method takes about ≈ 1.3 sec

to compute for ten images, the ML model training process takes about ≈ 5.7 sec, and model

inference takes ≈ 5.6 − 5.7 sec for ten thousand images. Therefore, we should expect that

the gain of information with the knowledge of the metric should be at least as important

as training the ML model. In all of our experiments, it is evident that the global ML model

outperforms the respective local ML models in terms of accuracy, with one exception

being the Krum algorithm [19]. Here, the local and global models seem very much aligned.

However, changing the data partitioning shows clearly that the gap between these two

greatly depends on the data distribution. Figure 4.3 is representative of other FL algorithms

that we tested, and they all show a very similar pattern (except Krum). The more data one

specific client gets, the more the client can learn and share with others, which in turn pulls

the weights of the other clients closer to the one of the client with the most data at hand,

and this leads to a diminishing gap between client ML model and global ML model.

Before we look at the XAI metrics occurring in Figure 4.2, we look at the round-to-round

metrics of the attribution we defined above. From these round-to-round metrics in Figure 4.4,

arguably only the correlation coefficients PEAR, SPEAR, and TAU show a recognizable

deviation between the global and client model. This is also something that we can see in

other experiments that we conducted. The SSIM metric is also recognizable as a useful
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Correlation Dirichlet IID Linear Square Exponential

SPEAR(MC, MG) ↑ 0.554752 0.818788 0.925514 0.921067 0.88716

Table 4.1.: Comparing Correlation Between Metrics Taken from Local and Global Model Differing

Algorithms.

Correlation FedAvg FedProx FedAvgM FedMedian FedTrimmedAvg Krum FedOpt

SPEAR(MC, MG) ↑ 0.585185 0.67037 0.692592 0.9407407 0.7851851 0.892593 0.751852

Table 4.2.: Comparing Correlation Between Metrics Taken from Local and Global Model Differing

Data Partitioning.

indicator because it somewhat follows the curve of the correlation coefficients. MSE and

NMSE are not useful because they are prone to spiky behavior, and NMI consistently showed

a very close value for the client and the global model in our experiments. So, from now

on, we will mostly rely on the SPEAR correlation coefficient because it shows monotonic

relationships. In addition, we can compare client attribution against global attribution on a

round-to-round basis, as shown in Figure 4.5. We notice that only the global model seems to

converge to a high SPEAR correlation coefficient, indicating that the global model is the most

stable one, at least on the remarks of our round-to-round metric, which adds nearly zero

cost to the evaluation. However, this linear increase of the SPEAR correlation coefficient

can not be observed in the case of the Dirichlet partitioning, which is the most interesting

for FL. Instead, it seemingly platoos very early (Round 5) at a value approximately twice

as high as the client model. We also looked at the mean and standard deviations of the

attributions and noticed that the global model has lower values than the client models.

For the XAI metrics, we prepared Table 4.3, which shows which model performed better

according to each metric. The table indicates that the global model performs better in most

cases. However, some of the values are very close to each other. We have also computed the

correlation matrix of these metrics and compared global and local model against each other

(see the last row). Also, we compared the correlation between having executed the same FL

algorithm and having the same data partitioning scheme (see Table 4.1 and 4.2). The results

indicate that the data partitioning scheme is of more significance since the correlation

values are consistently higher in that case, indicating a monotonic relationship. One notable

occurrence is that the Iterative Removal of Features (IROF) and IAUC metrics are often

reversed. The way the metrics are constructed could indicate that if a model performs better

in IROF, it is more focused because the important parts of the image get removed first. A

better IAUC metric could indicate that the model relies more on background information

because the latent activation on the blank image is higher.

To summarize our findings in this subsection: The global ML model performs better than

the local ML model in nearly all cases, and the data partitioning has more influence on the

XAI metrics than the executed FL algorithm. Furthermore, for development purposes it

makes sense to test the IID, Dirichlet, and Square partitioning scheme because they can

show distinct patterns on how the metrics evolve. Therefore, our research indicates that

more improvement in terms of the FL algorithm can be gained by focusing on improving
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(a)Comparing Against Respective Last

Attribution.

(b) Client Attribution Against

Global Attribution.

(c) Client Attribution Against

Last Global Attribution.

Figure 4.5.: Comparison Against Different Attributions.

Metric FedAvg FedProx FedAvgM FedMedian FedTrimmedAvg Krum FedOpt

Infidelity ↓ 0.148/ 0.052 0.168/ 0.064 0.038/ 0.0 0.354/ 0.104 0.152/ 0.063 0.233/ 0.109 0.207/ 0.074

Sparseness ↑ 0.39/ 0.4 0.38/ 0.385 0.415/ 0.428 0.388/ 0.392 0.39/ 0.396 0.393 /0.392 0.388/ 0.391

Faithfulness Cor. ↑ -0.001 /-0.007 0.019/ 0.034 0.0 /-0.036 0.018 /0.012 0.021/ 0.027 0.008/ 0.016 0.006/ 0.016

Faithfulness Est. ↑ -0.006/ -0.018 0.018/ 0.034 -0.004/ -0.022 0.023/ 0.025 0.012/ 0.016 0.021/ 0.036 0.015/ 0.017

Pixel Flipping (AOC) ↓ 0.19 /0.207 0.182 /0.226 0.116 /0.1 0.222 /0.265 0.241 /0.280 0.248 /0.286 0.249 /0.288

Region Pert. (AOC) ↑ 2.737/ 2.818 2.836/ 3.174 0.263 /0.0 3.133/ 3.851 3.857/ 3.891 3.739/ 4.16 3.442/ 4.369

AVG Sensitivity ↓ 1.352/ 1.014 1.342/ 1.285 3.280/ 2.176 1.71/ 1.084 1.384/ 0.973 1.299/ 1.106 1.231/ 1.159

MPRT (AOC) ↓ 96.351/ 94.155 85.212/ 83.420 101.891/ 99.481 90.642/ 86.372 91.969/ 87.756 92.607/ 86.664 90.826 /91.645

IROF (AUC) ↑ 0.483 /0.436 0.543 /0.507 0.308 /0.033 0.540 /0.530 0.562 /0.531 0.571 /0.555 0.561 /0.551

IAUC (AUC) ↑ 0.545/ 0.581 0.507/ 0.552 0.718/ 0.971 0.430/ 0.445 0.444/ 0.468 0.419/ 0.445 0.468/ 0.473

SPEAR(M
C
, M

G
) ≈ 0.82

Table 4.3.: Some XAI Metrics in the IID Case. Global [red], Client [blue].

data partition than focusing on the FL algorithm to be deployed. One interesting aspect

could be the introduction of generative AI methods. However, this would be subject for

further research and not in the scope of this thesis.

4.4. Experiment 2: Which XAI method is more stable?

While the term stability is ambiguous, many scholars in XAI argue that stability means in-

sensitivity to perturbation, which is precisely how the sensitivity metric is defined. However,

we pursue stability in this Section in two ways: (i) stability in light of predictive multiplicity

– known as the Rashomon Effect (see Definition 2.1.2) – and (ii) stability in terms of changes

to the explanation in consecutive FL rounds. Though sensitivity is an important criterion

in many applications – and there are already several studies on it – most end-users would

expect a stable explanation to hold to satisfy these two types of stability. However, research

literature lacks these two aspects, which is why we conducted these experiments.
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4.4.1. Methodology

To measure both aspects, we ran similar experiments as described in Experiment 1 (FedAvg,

ten FL-clients) with all available explainers explaining the same ten images for each class

instance. This setup was then run 74 times for each of the three data partitioning schemes:

IID, Square, and Dirichlet.

The Rashomon Effect is measured based on the metrics defined in the Foundations Chapter.

To quantize the values of the produced explanations (see [30]), we used the 𝑠𝑖𝑔𝑛 function

and also a histogram-based approach with 500 bins in the interval of [−1, 1]. We compared

it to the reference value/function with the < operator. Then, the mean and the standard

deviation of the results are computed.

4.4.2. Results

XAI-Method Sign Obscurity ↓ Sign Discrepancy ↓ Hist. Obscurity ↓ Hist. Discrepancy ↓

Saliency 0.0 ± 0.0 0.0 ± 0.0 0.182354 ± 0.071807 0.005452 ± 0.001293

PyTorch KPCA-CAM 0.0 ± 0.0 0.0 ± 0.0 0.209853 ± 0.003481 0.011519 ± 0.000207

PyTorch GradCAM 0.0 ± 0.0 0.0 ± 0.0 0.236960 ± 0.029444 0.015515 ± 0.001462

PyTorch AblationCAM 0.0 ± 0.0 0.0 ± 0.0 0.216519 ± 0.014479 0.012756 ± 0.000881

PyTorch EigenCAM 0.0 ± 0.0 0.0 ± 0.0 0.210519 ± 0.004349 0.011446 ± 0.000319

PyTorch EigenGradCAM 0.0 ± 0.0 0.0 ± 0.0 0.200418 ± 0.031280 0.014884 ± 0.001591

PyTorch HiResCAM 0.0 ± 0.0 0.0 ± 0.0 0.200404 ± 0.031272 0.014893 ± 0.001588

PyTorch GradCAM++ 0.0 ± 0.0 0.0 ± 0.0 0.236130 ± 0.020955 0.015332 ± 0.001123

PyTorch ScoreCAM 0.0 ± 0.0 0.0 ± 0.0 0.250193 ± 0.024496 0.015454 ± 0.001158

PyTorch XGradCAM 0.0 ± 0.0 0.0 ± 0.0 0.223725 ± 0.018838 0.013896 ± 0.001166

PyTorch ShapleyCAM 0.0 ± 0.0 0.0 ± 0.0 0.238422 ± 0.026693 0.015792 ± 0.001403

LIME 0.045991 ± 0.010919 0.093165 ± 0.011554 0.216912 ± 0.020085 0.004401 ± 0.000242

InputXGradient 0.150464 ± 0.012946 0.180130 ± 0.015116 0.269188 ± 0.094524 0.008370 ± 0.002510

Deconvolution 0.150726 ± 0.012748 0.180577 ± 0.014223 0.361272 ± 0.107072 0.010079 ± 0.002137

Guided Backprop 0.150726 ± 0.012748 0.180579 ± 0.014226 0.361245 ± 0.107100 0.010083 ± 0.002135

Captum Guided GradCAM 0.150726 ± 0.012748 0.180579 ± 0.014226 0.016846 ± 0.020292 0.002405 ± 0.002707

Captum Deeplift 0.155078 ± 0.013944 0.186823 ± 0.014578 0.278242 ± 0.088732 0.009014 ± 0.002337

Captum DeepliftSHAP 0.164003 ± 0.012308 0.191474 ± 0.012993 0.287071 ± 0.099401 0.009066 ± 0.002415

Captum GradientSHAP 0.227833 ± 0.003626 0.236654 ± 0.003733 0.236309 ± 0.071842 0.009277 ± 0.002025

Table 4.4.: Measuring the susceptibility of the Rashom Effect for different XAI Methods.

The results are shown in Table 4.4. We can see that different types of XAI methods are

differently affected by the Rashomon Effect. First, we notice that for the Sign Obscuri-

ty/Discrepancy, some values are zero, which aligns with the fact that these methods only

produce a positive feature attribution. Second, we can see that the methods Captum Guided-
GradCAM and PyTorch KPCA-CAM are the most stable concerning to the Rashomon Effect.

Interestingly, while the different XAI methods provided by the grad-cam library perform

well in regard to the histogram obscurity, this seems to be flipped for the discrepancy, which

means that while the predictions are somewhat the same data-wise, the maximum ratio of

conflicting observations between the predictions as a whole is higher. Figure 4.6 visualizes

our results.
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(a) Sign Obscurity.
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(b) Sign Discrepancy.
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(c) Histogram Obscurity.
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(d) Histogram Discrepancy.

Figure 4.6.: Visualization for Results in Table 4.4. 37
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(a) SSIM comparing consecutive rounds.
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(b) RankTAU comparing consecutive rounds.
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(c) TopTAU comparing to last round and grouped by rounds.

Figure 4.7.: Example Results for Stability Measurements.

As mentioned above, another important form of stability is the similarity of explanations

generated in consecutive FL rounds. Our results are shown in Figure 4.7. We used the SSIM,

SPEAR, TAU, RankTAU (indices ranked according to feature importance), and TopTAU (top
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4.5. Experiment 3: Does Optimizing Explanations throughAggregation create better Explanations?

eleven indices ranked according to feature importance) values to compare explanations to

the next/last round. For the sake of simplicity, we only included the most interesting figures.

Additional Figures can be found in the Appendix A.

Given our results, we can infer that especially the XAI methods LIME, PyTorch EigenGrad-

CAM, and PyTorch KPCA-CAM seem to be an excellent choice when it comes to stable

explanations showing remarkable results in the SSIM, RankTAU, and TopTAU metrics.

These results are also aligned with the other data partitioning schemes, Square and Dirichlet

(see Appendix A). For the Square paritioning we can see that the standard deviation is

smaller, which is reasonable for the FedAvg algorithm. On the other hand, for the Dirichlet

partitioning the opposite is the case.

4.4.3. Remarks

Our results try to fill the knowledge gap of not knowing what to expect in terms of stability

when using different XAImethods. With the figures and results that we provided, researchers

and practitioners are able to estimate and weigh alternatives against each other. For this, we

did not want to explicitly state the numbers and compare them against each other; rather,

we provide the figures as is with open possibilities for interpretation.

4.5. Experiment 3: Does Optimizing Explanations through
Aggregation create better Explanations?

Given that explainability is considered a non-functional requirement, software engineers and

requirements engineers want to be able to measure how well an explainability requirement

is fulfilled. While one approach would be to gather data directly from the user to measure

the degree of fulfillment, in this instance, we could not rely on user feedback, so instead, we

opted for using XAI metrics as proxies for evaluating and comparing different explanations

against each other (see also Subsection 2.1.2 with the 𝑄𝐸 function). However, during our

experiments, it became clear that metrics alone are not actionable, which limits their value

immensely. Additionally, taking of said XAI metrics is a tedious task and fallible to be

unrepresentative if it is not applied correctly (e.g., most XAI metrics can only be compared

relatively against each other and only on the same problem).

To mitigate some of these problems, we adopted the concept of optimized XAI method

aggregation as proposed in the paper [50] from Decker et al. and applied and extended it

to our FL setting, where we continuously adapt and evaluate the aggregated weights for

consumption and optimize for specific metrics.
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4. Explainability and Federated Learning

Figure 4.8.: Optimizing Explanations through Aggregation for certain Metrics [50].

4.5.1. Proposed Solution

The concept presented in [50] can be visualized through Figure 4.8, which the authors

provide. This Figure, shows that multiple explanations by different explainers are weighted,

aggregated and combined into one single explanation. The aggregation weights are calcu-

lated by optimizing for one or more metrics. In the original paper, the authors optimized

for the metrics of infidelity and sensitivity. However, we extended the optimization also to

other XAI metrics and reformulated the problem to a multi-objective problem.

Definition 4.5.1 (Optimizing Explanations) Let Q : R𝑑 → R be a metric for feature
attribution methods 𝜙 : R𝑑 → [0, 1]𝑑 with 𝑥 ∈ R𝑑 . If Q can be transformed to the following
form with suitable 𝛾1 ∈ R𝑔×𝑑 and 𝛾2 ∈ R𝑔:

Q(𝜙 (𝑥)) = E𝛾1,𝛾2 [| |𝛾1𝜙 (𝑥) − 𝛾2 | |22]

Then, the optimal aggregation of different feature attribution methods 𝜙∗ = Φ × 𝜔 with a
weight vector 𝜔 ∈ R𝑘 for 𝑘 feature attribution methods and Φ = (𝜙1, . . . , 𝜙𝑘) ∈ R𝑑×𝑘 is given
by solving the following convex problem:

min

𝜔
E[| | (𝛾1Φ)𝜔 − 𝛾2 | |22] s.t. 𝜔𝑖 ≥ 0,

𝑘∑︁
𝑖=1

𝜔𝑖 = 1

It can be shown “[. . . ] that the quality of the aggregated explanation is at least as good as the
equivalently weighted individual attribution qualities [. . . ].” [50].

Given Definition 4.5.1 above, we adopted the proposed optimization for our FL context by

first introducing multiple other XAI metrics that can be optimized the same way: (i) Attack

Metric (e.g., similar to sensitivity, but with adversarial perturbations), (ii) ROAD, (iii) Selec-

tivity, (iv) Pixel Flipping, and (v) Region Perturbation. Moreover, make metrics available
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(e.g., IROF, IAUC, DAUC, Sparseness, MPRT, Faithfulness Correlation, Faithfulness Es-

timate, Local Lipschitz Estimate) on a “choose-by-best” basis, where the weight vector

𝜔 one-hot encodes the selection of the best feature attribution method given a specific

metric. Furthermore, we propose that in a classification task, the optimization is done

on a per-class-basis because our testing showed that depending on the class instance to

be explained, the optimal aggregation weight vector 𝜔 can vary significantly. Therefore,

respecting this circumstance is crucial for achieving higher performance in the optimization

process. The adversarial samples were generated with different methods provided by the

Captum
6
[110] Python library (Project Gradient Descent (PGD) [129], Fast Gradient Sign

Method (FGSM) [78]), and the Adversarial Robustness Toolbox (ART)
7
[144] (specifically

the Auto-Attack [44], Auto Conjugate Gradient [190], Auto Projected Gradient Descent

(Auto-PGD) [44], Carlini & Wagner (CW) [28], DeepFool [137], FGSM, Momentum Itera-

tive Method [55], Basic Iterative Method (BIM) [116], NewtonFool [95], Jacobian Saliency

Map [147], Shadow Attack [75], Spatial Transformation Attack [67], Square Attack [10],

Zeroth Order Optimisation (ZOO) [39], and Elastic Net [38]).

While the authors of the original paper limited the metrics for the aggregation only to

sensitivity and infidelity, we can extend to an arbitrary number of metrics, and also impose

additional constraints like the costs of a given XAI method, and add metric preferences to

the equation, and arrive at the following multi-objective optimization problem.

Definition 4.5.2 (Multi-objective Explanation Optimization) Let 𝜔1, . . . , 𝜔𝑚 ∈ R𝑘 be
the “optimal” individual weights for each metric𝑚, as defined in Definition 4.5.1. Furthermore,
let Ω = (𝜔1, . . . , 𝜔𝑚) ∈ R𝑘×𝑚 be the weight-matrix composed of stacking the individual weight
vectors for each metric, 𝑐 ∈ R𝑘 be a cost-vector that defines the cost of each of the 𝑘 feature
attribution methods (e.g., normalized median measured times to compute 𝑛 number of feature
attributions), and 𝑝 ∈ R𝑚 be a preference-vector, defining how the individual metrics should be
prioritized. Then, the above problem can be defined as the following multi-objective problem
with two objectives and the aggregated weight vector𝜓 ∈ R𝑘 as target:

𝛿1 :=min

𝜓
𝑎𝑔𝑔

[
(Ω⊺ × 𝑑𝑖𝑎𝑔(𝑐)) ×𝜓

]
𝛿2 :=max

𝜓
𝑎𝑔𝑔

[
(Ω × 𝑑𝑖𝑎𝑔(𝑝))⊺𝜓

]
constr.:

∑︁
𝑖

𝜓𝑖 ≈ 1 ∧ ∀𝑖 ∈ {0, . . . , 𝑘} : 0 ≤ 𝜓𝑖 ≤ 1

Where 𝛿1 is to minimize the cost for the feature attribution, and 𝛿2 is to maximize the metric
improvement. The function 𝑎𝑔𝑔 aggregates the value of the resulting vector to a single scalar
and is usually just the sum over each element, or to smooth out negative values, the LogSumExp
function. The cost objective is here defined as proportional to a chosen explainer’s influence
e.g.,𝜓𝑥 = 0.5 results in accounting for 0.5 times the cost of the explainer at position 𝑥 . If this is
not the desired behavior than 𝛿1 should be defined as 𝛿1 := min

𝜓
𝑎𝑔𝑔

[
(Ω⊺ × 𝑑𝑖𝑎𝑔(𝑐)) ×

⌈
𝜓
⌉]

instead.

6https://github.com/pytorch/captum
7https://github.com/Trusted-AI/adversarial-robustness-toolbox
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4. Explainability and Federated Learning

As noted before, the multi-objective optimization problem in Definition 4.5.2 is solved for

each class instance in the classification task. For solving the computation of the individual

weight vectors, we used the cvxpy8 [54] Python library – like the original authors – which

uses a solver specifically designed for convex optimization problems. While it is possible to

use this library for our multi-objective optimization problem, we would need a mechanism

to additionally specify two hyperparameters 𝜆𝑐, 𝜆𝑝 that weight the objectives against each

other so that they can be stated as minimizing one total sum. However, finding these

hyperparameters beforehand is challenging and prone to error, so we opted instead for

solvers designed for the multi-objective task. Respectively, we used the Python library

pymoo9 [20] and scikit-opt10. These libraries use genetic algorithms like NSGA-II [48]

as solvers. Furthermore, our testing showed that using cvxpy will most likely result in

sparse matrices (meaning not much aggregation, just choosing the best), while the genetic

algorithms tend to facilitate aggregation.

4.5.2. Analysis

We conducted multiple experiments to see whether or not our method of explanation

optimization is valid. The first series of experiments is dedicated to the method by which

the aggregation weights are calculated. Figure 4.9 shows the results. We utilized several

different XAI methods (see x-axis) and optimized over all available metrics. The results were

then aggregated by averaging or with optimization through cvxpy which does not respect

the cost of the XAI method, or with pymoo which solves the multi-objective optimization

problem we described beforehand
11
. In any case, we can see that the aggregation performs –

in aggregate – always better than any XAI method alone. Also, we can see that a structured

way of computing the aggregates is better than simply averaging. Furthermore, respecting

cost as an additional objective does not significantly harm the improvement we get from

the aggregation, sometimes even surpassing cvxpy in that regard. However, this graph only

shows the total improvement, which is calculated by normalizing each metric results via

min-max scaling, where the minimum and maximum are chosen from all the results on a

given metric. The total improvement is, therefore, an average of all individual improvements

for a given metric. Looking at the level of individual metrics (see Figure 4.10), we can see

that aggregation sometimes performs worse than a single method. It may not be desirable to

optimize simply for all available metrics but target specific metrics that shall be improved.

By representing the problem as a multi-objective optimization one, we can also see in

Figure 2.1 that the relation between cost and performance is strongly linear
12
. In this

instance, we opted for the pseudo-weight algorithm [49] to select the concrete aggregation

weights. In essence, the pseudo weights algorithm respects how much each objective should

be weighted against each other. Both were set at 0.5 to balance cost and performance. The

8https://github.com/cvxpy/cvxpy
9https://github.com/anyoptimization/pymoo
10https://github.com/guofei9987/scikit-opt
11
Results respecting the real cost (see remark in Definition 4.5.2.) can be found in the Attachment A.4.

12
This changes if we apply the ceiling function as proposed in Definition 4.5.2.
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Figure 4.9.: Comparing different Aggregated Weight Computation Methods.

pseudo-weights can be optimized depending on the requirements one has. Furthermore,

one can introduce additional constraints to the multi-objective optimization problem e.g.,

setting a maximum bound for XAI methods to be used or prioritizing specific metrics more

than others.

Now, to confirm that our solution performs as well as described in the original paper, we

tested it specifically to optimize the metrics infidelity and sensitivity, where sensitivity

draws 250 samples from adding random noise and infidelity uses perturbation based on

substitution with black squares. Figure 4.12 shows the results. The results mostly align with

the original paper, especially the significant boost in performance regarding sensitivity,

which resembles the results they obtained. Infidelity is worse. However, in the original

paper, they used different XAI methods for sensitivity and infidelity, and their method of

perturbation for infidelity differs, which would explain the decrease in the performance for

infidelity. Choosing a suitable perturbation method is therefore crucial to realize gains that

can be applied to real-world scenarios.

What happens if we optimize for a specific category of metrics, namely perturbation-based

methods, was also particularly interesting. Figure 4.13 shows the results. It shows that the

overall improvement can benefit by this approach, with an average uplift of around 25%.

Interestingly, we can also see that this method improves the robustness against different

types of attacks significantly; granted, this does not reflect real-world use cases because

the improvement only says that the explanation does change less in light of perturbations

generated by attacks but nothing about the prediction.

In the next series of experiments, we were interested in whether the aggregation weights

could be reused in the next round without a decrease in performance. The results are shown

in Figure 4.14. Surprisingly, not only were we able to reuse the weights, but it also had an

aggregated improvement compared to the individual XAI method. There can be several

reasons for this: (i) First, the measurement was taken for the FL round 𝑇 = 24. Therefore,

the ML model had already converged which could be reflected also in the explanations.

(ii) Second, we included complexity and randomization metrics that significantly boost the

aggregated improvement. (iii) Lastly, it can very well be the case that pymoo has not found

the best aggregated weight for the given round 𝑇 but for the next round 𝑇 + 1.
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(c) Results Aggregation via pymoo.

Figure 4.10.: Comparing different Aggregation Methods on a per Metric-basis.
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Figure 4.12.: Multi-Objective Optimization on Infidelity and Sensitivity Metrics.
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Figure 4.13.: Improvement on Perturbation-based XAI Metrics.
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Figure 4.14.: Reusing Aggregated Weights for the next Round.
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Figure 4.15.: Calculating Aggregation Weights over all Classes simultaneously.

Lastly, we wanted to see if optimization should be applied to all classes of the classification

problem simultaneously or individually, as we did before. Figure 4.15 shows the results.

Compared to Figure 4.10c, we can see that the negative spikes reach further down. However,

some metrics, like sensitivity, seem to benefit from this approach.

In conclusion, the presented results (of all conducted experiments in this Section) show

that optimizing explanations through solving a multi-objective optimization problem can

measurably outperform individual XAI methods while respecting optimization targets.

4.5.3. Application for Requirements Engineering

The idea in the context of this thesis is that requirements engineers can utilize this method

to additionally constrain or measurably define target metrics for explainability that should

be optimized. The presented framework is very flexible and can be adapted and extended

for other measurable metrics. However, before we finish this section, we briefly want to

give additional considerations for applying this technique in practice.
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Important: Considerations and Pitfalls for Requirements Engineers
• One needs to know how to apply XAI metrics and their limitations. Given the

flexibility of some metrics that can be instantiated e.g., with different types of

perturbation functions and hyperparameters, one needs to be knowledgeable so

that their application has real-world meaning. Figure 4.12 demonstrated this.

• One needs to be knowledgeable of different XAI methods. To optimally balance

cost and performance, it also makes sense to limit the number of XAI methods one

uses for the aggregation. Some XAI methods hold certain desirable properties that

could potentially invalidated by performing the aggregation.

• Importantly, one must be careful about the explanation vs. prediction gap. While

explanations should be tightly integrated with the underlying ML model, this may

not always be true. For example, the attack metric used throughout this section is

essentially a sensitivity metric, but regarding the explanation, not the prediction.

So, it only describes how much the explanation changes but not how the prediction

changes, which is undoubtedly a crucial part for robustness against attacks.

• While our results indicate that the aggregation weights can be reused, we strongly

suggest tying it to some form of adaptive validation mechanism so that if a dete-

rioration in performance occurs, a recomputation of the aggregation weights is

started.

• Lastly, we want to encourage imposing additional constraints on the multi-objective

optimization problem to further refine the aggregation for desirable properties

if possible. This notion is also in line with the idea that every non-functional

requirement should be measurable. If this is the case, one can also try to apply this

concept to make what is measurable; actionable.

4.6. Experiment 4: How much does Differential Privacy harm
the explanations?

DP and other Privacy-Enhancing technologies (PETs) try to minimize the risk of compro-

mising an individual’s privacy, where common anonymization techniques would not suffice.

In short, DP allows data to be analyzed while ensuring the individual’s privacy through

certain statistical guarantees [64, 119]. One of the most commonly used notation for DP is

presented in Definition 4.6.1. Indeed, one could write a whole book about this very topic.

However, in this section, we are only interested in applying the most common concept

of DP already present in the FL framework Flower and investigating how it affects the

explanation we generate.
13

Specifically, Flower supports the following DP mechanisms:

13
We also exclude methods like Differential Privacy Stochastic Gradient Descent (DP-SGD) [1] that can be

directly applied to the ML model training e.g., for PyTorch with the Python library opacus [193].
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• DP mechanisms are applied centrally (after ML model aggregation) or locally (before

ML model aggregation). Applying DP mechanisms centrally usually results in a higher

utility than applying them locally, but it requires additional trust in the FL server

instance.

• Fixed (predefined threshold) or adaptive (dynamic threshold) clipping of weight up-

dates and adding Gaussian noise to it. In the adaptive setting, the weight updates

are clipped based on the algorithm presented by Andrew et al. [9], while in the fixed

setting, flat-clipping is applied, as presented by McMahan et al. [133]. Furthermore,

the Gaussian noise can be added on the client side, only on the server side, or both.

Definition 4.6.1 ((𝜖, 𝛿)-differential privacy) A randomized algorithmA is (𝜖, 𝛿)-differentially
private if for all databases 𝑥,𝑦 ∈ D𝑛 – where databases are assumed to be vectors in D𝑛 for
some domain D – that differ only in one entry, Pr[𝑥] the probability function for 𝑥 , and for
all subsets S of outputs from A, the following equation holds:

Pr[A(𝑥) ∈ 𝑆] ≤ 𝑒𝜖 · Pr[A(𝑦) ∈ 𝑆] + 𝛿 [101]

The effect of the DP mechanisms on the explanations is measured in terms of the explain-

ability metrics, as we did in Experiment 1, stability, as we did in Experiment 2, and in terms

of explanation optimization, as we did in Experiment 3. For further simplicity, we only used

fixed clipping – and not adaptive clipping – so that we do not need to tune and rely on

additional hyperparameters in our experiments. Furthermore, when applying client side DP,

we also apply Gaussian noise on the server side, as is the case in Flowers’s own reference

implementation. Also, we only apply the noise to specific layers – all bias parameters, all

fully connected layers, and layer zero and layer seven – of our ML model because otherwise

the ML model becomes unusable most of the time. Specifically layers like BatchNorm2D

become unusable with clipping and Gaussian noise applied, this is also why the opacus

Library for DP-SGD converts layers to other nearly equivalent layers e.g., BatchNorm2D to

GroupNorm. However, we did not want to change the ML model directly, so this would be

part of future work instead.

First and foremost, the results show that the accuracy drops significantly when DP is applied.

Notably, we can also see that the XAI metrics and measurements are worst in nearly all cases,

meaning that DP harms explainability. This is unsurprising because research literature on

it already exists [69, 160]. However, in terms of stability, our results – at least by looking at

the figures – show that while the explainability is worse on average, the measurements try

to converge very steeply to a similar point to our reference measurement. This behavior

leads us to the conclusion that explainability is mostly harmed if not an adequate number

of compensatory rounds14 are added. We want to stress out, that the compensatory rounds

are only meaningful for the explainability and not e.g., the accuracy. Even after 150 FL

rounds – six times more FL rounds – both client side (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 80.94) and server side

(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 82.08) DP could not achieve the same accuracy score than without DP
15
. Lastly,

14
Additional FL rounds that compensate the drawbacks of adding DP.

15
See Appendix A.19.
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4.7. Experiment 5: What if clients misbehave?

Measurement No DP Server-side fixed Clipping Client-side fixed Clipping

Mean Accuracy ↑ 87.37 42.38 47.43

Mean SSIMnext ↑ 0.66 ± 0.23 0.61 ± 0.2 0.56 ± 0.19

Mean SSIMlast ↑ 0.46 ± 0.23 0.22 ± 0.2 0.18 ± 0.2

Mean Sensitivity ↓ 1.678 ± 1.334 18.883 ± 13.559 17.364 ± 33.122

Mean Infidelity ↓ 0.049 ± 0.044 338.636 ± 632.826 1561.612 ± 4565.515

Mean Faithfulness Cor. ↑ 0.047 ± 0.101 0.015 ± 0.085 0.017 ± 0.1

Mean Pixel Flipping (AOC) ↓ 0.254 ± 0.177 0.131 ± 0.203 0.154 ± 0.237

MPRT (AOC) ↓ 94.927 ± 5.443 124.512 ± 21.080 121.042 ± 18.716

Table 4.5.: Results for Saliency FedAvg/IID with and without DP.

we could not find a significant difference between server side and client side DP. This could

be because of our hyperparameter choice (see Appendix A). However, investigating this

further would be subject to future work.

Second, having to redo the methodology presented in Experiment 2, with 15 runs in com-

parison, we could not see any significant difference between applying DP and not applying

DP in terms of the stability related to predictive multiplicity. This is interesting because it

suggests that this form of stability can be directly linked to the XAI methods and not to

the ML model performance, meaning that our observations in Experiment 2 are most likely

generally applicable.

Finally, we wanted to investigate how DP could affect our explanation optimization ap-

proach, which was presented in Experiment 3. For this we utilized all of our available XAI

methods and all available XAI metrics except metrics that are complexity-based (MPRT,

and Sparseness). The results are shown in Figure 4.17. We can clearly see that DP has a

very bad influence on our optimization mechanism because both of them are worse than no

DP applied. Furthermore, we can see that Client-side DP is more harmful than Server-side

DP for XAI metrics. This results is also not that much surprising, given that a lot of XAI

metrics seem to perform worse, when the accuracy of the ML model drops – as it is the case

when applying DP.

To put it briefly, DP harms explainability, but not as much as the accuracy of the ML

model. Surprisingly, the effect on stability in terms of the Rashomon effect is non-existent.

Lastly, we investigated whether our explanation optimization approach could again boost

explainability performance (measured regarding XAI metrics), which is the case, but not

enough to compensate for the harmful effects of applying DP.

4.7. Experiment 5: What if clients misbehave?

In contemporary FL research literature, the fact that any FL system depends on the FL

clients executing the FL algorithm as intended is often assumed. However, it may be difficult
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(c) Accuracy Client-Side

DP
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(d) SSIMnext without DP
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(e) SSIMnext Server-side DP
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(f) SSIMnext Client-Side DP
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(g) SSIMlast without DP
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(h) SSIMlast Server-side DP
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Figure 4.16.: Results for Saliency FedAvg/IID with and without DP.

to rely on this given system property in practice. Even if we do not assume malicious intent,

individual FL clients could introduce mistakes or errors in the FL algorithm. Therefore, in

this Section, we want to determine the impact of mistakes or errors introduced by individual

FL clients on explainability. For this, we tested the following:

• Shifting or Randomizing Labels: An increasing number of clients wrongfully train

their local ML model on shifted or randomized labels.

• Reporting the wrong number of processed samples: One client wrongfully counted

the number of samples it used to trained its local ML model.
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Figure 4.17.: Multi-objective Explanation Optimization with and without DP.

Measurement Reference Shift one Client Shift two Clients Shift four Clients Shift eight Clients

Mean Accuracy ↑ 83.303 82.632 80.514 57.0325 3.4246

Mean SSIMnext ↑ 0.71 ± 0.16 0.65 ± 0.22 0.60 ± 0.22 0.52 ± 0.24 0.54 ± 0.20

Mean SPEARnext ↑ 0.69 ± 0.13 0.65 ± 0.17 0.62 ± 0.17 0.57 ± 0.19 0.55 ± 0.17

Mean SSIMlast ↑ 0.46 ± 0.21 0.45 ± 0.21 0.40 ± 0.18 0.42 ± 0.21 0.35 ± 0.16

Mean SPEARlast ↑ 0.51 ± 0.16 0.48 ± 0.17 0.56 ± 0.17 0.46 ± 0.18 0.38 ± 0.14

Mean Infidelity ↓ 0.046 ± 0.042 0.028 ± 0.034 0.015 ± 0.019 0.014 ± 0.016 0.008 ± 0.007

Mean Sensitivity ↓ 1.453 ± 1.166 7.778 ± 8.135 3.947 ± 3.306 3.219 ± 3.201 44.356 ± 36.438

Mean Faith. Cor. ↑ 0.038 ± 0.105 0.062 ± 0.110 0.023 ± 0.097 0.032 ± 0.098 0.03 ± 0.089

Mean Pixel Flipping (AOC) ↓ 0.288 ± 0.213 0.282 ± 0.207 0.262 ± 0.187 0.205 ± 0.172 0.064 ± 0.072

Mean Region Pert. (AOC) ↑ 4.862 ± 0.935 4.648 ± 0.826 4.054 ± 0.987 2.505 ± 0.722 -0.288 ± 0.181

Mean IROF (AOC) ↑ 0.604 ± 0.193 0.602 ± 0.196 0.554 ± 0.214 0.518 ± 0.256 0.137 ± 0.189

Mean IAUC (AOC) ↑ 0.460 ± 0.215 0.454 ± 0.231 0.441 ± 0.243 0.518 ± 0.238 0.801 ± 0.199

Table 4.6.: Results of Experiment 5 (Shifting Labels): Saliency on FedAvg/IID.

• Randomized Model Weights: An increasing number of clients sends randomized ML

model parameters to the FL server instance.

In our first series of experiments (see Table 4.6), we can see that shifting labels will mostly

be harmful when a total number of four Clients start shifting labels. However, we can

see that some XAI metrics need to be evaluated in the context of multiple metrics to be

helpful, given that some metrics are measured to be improved under shifting labels. The
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Measurement Reference One Client Two Clients Four Clients

Mean Accuracy ↑ 83.303 81.68 77.359 58.196

Mean SSIMnext ↑ 0.71 ± 0.16 0.70 ± 0.18 0.52 ± 0.20 0.34 ± 0.18

Mean SPEARnext ↑ 0.69 ± 0.13 0.69 ± 0.15 0.59 ± 0.15 0.44 ± 0.13

Mean SSIMlast ↑ 0.46 ± 0.21 0.53 ± 0.19 0.41 ± 0.17 0.33 ± 0.16

Mean SPEARlast ↑ 0.51 ± 0.16 0.52 ± 0.17 0.45 ± 0.14 0.40 ± 0.13

Mean Infidelity ↓ 0.046 ± 0.042 0.006 ± 0.006 0.003 ± 0.003 0.001 ± 0.001

Mean Sensitivity ↓ 1.453 ± 1.166 2.291 ± 2.135 4.212 ± 2.537 23.647 ± 16.641

Mean Faith. Cor. ↑ 0.038 ± 0.105 0.024 ± 0.109 0.025 ± 0.88 0.012 ± 0.104

Mean Pixel Flipping (AOC) ↓ 0.288 ± 0.213 0.018 ± 0.120 0.169 ± 0.096 0.124 ± 0.043

Mean Region Pert. (AOC) ↑ 4.862 ± 0.935 0.209 ± 0.119 1.649 ± 0.525 0.659 ± 0.273

Mean IROF (AOC) ↑ 0.604 ± 0.193 0.555 ± 0.161 0.460 ± 0.171 0.284 ± 0.176

Mean IAUC (AOC) ↑ 0.460 ± 0.215 0.467 ± 0.176 0.581 ± 0.179 0.724 ± 0.176

Table 4.7.: Results of Experiment 5 (Randomizing Labels): Saliency on FedAvg/IID.

same applies to randomizing the labels, as shown in Table 4.7, except that the deterioration

seems more significant than shifting the labels.

We omitted the results of one client reporting the wrong number of samples because our

evaluation only showed an insignificant deviation from the reference.

Finally, we wanted to see how our FL context is affected by introducing clients that send

randomized ML model weights to the central FL server instance. Our results – included in

the GitLab repository – indicate that only one client performing the randomization is enough

to completely break the FL algorithm, resulting in abysmal accuracy and explainability

metrics. This result is interesting, given that even in the FedAvg/IID case, one client suffices

for this attack.

To summarise our experiment results: It is evident that the demonstrated types of attacks

influence explainability and ML model performance, with sending randomized ML model

weights being the strongest. Therefore, some form of sanity check should be carried out

before the aggregation is done. While sanity checks impose additional overhead on the FL

server instance, it may be necessary for specific environments to mitigate the risk of being

affected by one of the presented attacks.
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In this Chapter, we wanted to field-study some of our results presented in Chapter 4. We

conducted a survey based on a proxy task that was answered primarily by students and

researchers of the computer science department at the Karlsruhe Institute for Technology

(KIT) and Politecnico di Milano.

5.1. Goals and Questions (2)

Our GQM goals are further extended with the following research and evaluation goals for

this Chapter:

• RG2: Examine participants’ different opinions regarding explainability.

• RG3: Examine participants’ acceptance of different explanation approaches.

• EG6: Evaluate the effectiveness of the explanation optimization approach for humans.

This time, each associated question is directly evaluated in terms of participants’ agreement,

satisfaction, or opinions.

5.2. Survey

In the following, we will present our user survey from the preparatory setup to analysis.

The reader should have a good understanding of how we designed, conducted, and analyzed

the survey. Where needed, we added statistical measurements.

5.2.1. Setup

The survey design is structured into four sections: (i) Participant’s experience, (ii) Opinions

about explainability, (iii) Evaluation of the explanation optimization. In our survey design,

we followed the principles found in contemporary textbook literature [99, 152, 161]. We

mainly focused on simplicity so that little to no prior experience was needed to participate

in the survey.
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𝜅 Interpretation

< 0 Poor agreement

0.01 − 0.2 Slight agreement

0.2 − 0.4 Fair agreement

0.41 − 0.6 Moderate agreement

> 0.61 Substantial to perfect agreement

Table 5.1.: Fleiss’ Kappa Interpretation [118].

5.2.2. Implementation

After the design phase, we implemented the survey via the EFS Survey software
1
, which

is part of the unipark software suite. The software is proprietary, and a license for it was

obtained via the KIT. Custom design changes have been made to make the questionnaire

easier to read. For instance, we added a border around the question to visualize their

separation better. Furthermore, for some questions that required more space for images,

we increased the size of the question boxes for desktop computer screens. For the section

regarding the evaluation of the explanation optimization, we rotated (selection of different

questions) and shuffled the questions the participants saw to allow for comparison between

more XAI methods and different orders. It should be emphasized that the rotation is not a

random; instead, the survey software tries to obtain an approximately uniform distribution

for all questions. The shuffling, however, is purely random and individual for each user.

Lastly, we added an introduction of our research goal and appropriate legal disclaimers to

the survey. The survey is attached to this thesis in Appendix A.

5.2.3. Execution

The survey was conducted from 08.04.2025 to 14.04.2025. Subjects of the survey were

predominantly students and researchers from the computer science department at the KIT

and Politecnico di Milano. Participation was voluentarily. Alongside the survey, participants

were offered a small candy treat to engage in the participation. However, participation or

proof thereof was no requirement to obtain the candy.

5.3. Results and Discussion

Of the 95 samples, 28 participants completed the survey. To mitigate the effect of a selection

bias because of partial results, we only evaluated the 28 completed surveys. Unsurprisingly,

most participants identified themselves as male, and most were relatively young (< 34

years). Interestingly, the heterogeneity of the participant group regarding their highest

1https://www.unipark.com
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Figure 5.1.: Participant’s Heterogenity.
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Figure 5.2.: Self-expressed Knowledge in SE.

academic degree is pleasantly somewhat evenly distributed. Nevertheless, most participants

were students or researchers who had master’s degrees.

Regarding self-expressed qualifications in software engineering (see Figure 5.2), the partici-

pants were not shy in proclaiming their knowledge. We are not entirely sure why the figure

shows that around 50% of the participants have “very good” or better Software Engineering

(SE) knowledge (the one-sided t-test also confirmed this by a standard significance level set

to 0.05). This level of qualification is already interesting, raising the question of whether

people tend to overestimate their self-reported knowledge. Also interesting is that from

the three categories, “Programming” obtained the most people who reported knowledge of

“very good” or higher, indicating that programming is easier to learn or people choose to

refine the most. With 𝜅 ≈ 0.402, the agreement between participants in their qualification

was also statistically measurable.

If one participant selected in one of the categories presented in Figure 5.2 a score higher

than “good”, they were also asked to specify how many years of experience they have in SE.

The results can be seen in Figure 5.3. We removed two outliers in the data: one participant

answered 25 years and another 99 years. However, the expressed years of experience in SE

matches the fact that the self-reported qualifications were very high.

0 2 4 6 8 10 12 14 16
years

Years of Experiences in SE

Figure 5.3.: Years of Experiences in SE.
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Figure 5.4.: Self-expressed Knowledge in AI and XAI.

Next, in Figure 5.4, participants were asked about their familiarity with AI and XAI. While

participants reported a “fairly” or higher score in their knowledge and usage – even in

development – of AI, most reported a poor score in their knowledge of XAI. Unsurprisingly,

this is also why most participants have not used XAI methods. This indicates that people

tend to “just” use or apply AI and raises the question of how the participants know that the

AI does what it is supposed to do when they use or apply AI. The participants want more

explainability in the later part of the survey results. However, the fact that most of them

have not used any XAI method is somewhat astonishing. This can again be statistically

measured by first calculating Fleiss’ Kappa over all the questions (𝜅 ≈ 0.247), questions

regarding just AI (𝜅 ≈ 0.686) and just the questions regarding XAI (𝜅 ≈ 0.557).

In Figure 5.5, we asked participants multiple questions about explainability. Notably, the

introduction of ML in software harms the acceptance of an explanation. Also, we can see that

while participants answered mostly that they understand howAI works, their understanding

of how AI reasons is lower. These two questions are somewhat interesting, given that

understanding how something works may arguably also include how it reasons. However,

this is not the case here. On the other hand, one could argue that understanding reasoning

is something more instance-specific, which is why the understanding is lower. Next, we

asked participants whether they have prejudices against AI because of an assumptive lack

of explainability, which was mostly agreed upon. This is also interesting, given that a

majority of the participants do apply or use AI. The next set of questions were all related to

establishing if there is an agreement on the importance of explainability as a non-functional

requirement in SE, which is favored in strong agreement between participants. Again, there

is a stronger emphasis on applying explainability in conjunction with AI (especially ML).

Figure 5.6 asked which parts regarding an explanation are valuable to a participant (compare

to Section 6.3). While participants chose to rate every mentioned aspect to be important

(𝜅 ≈ 0.409), the reasoning was chosen more often than others. The presentation of an

explanation seemed to be the least important. However, the results are not distinct enough

from the other aspects to be definitive. In the free text fields, participants also valued the time

needed to understand an explanation (one participant) and the importance of correctness

(one participant). One participant also seemed to favor the term observability more than

explainability. The idea is that with observability, explainability can be achieved “externally”.

This notion does relate to the difference between interpretability and explainability, which
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Figure 5.5.: Opinions about Explainability in SE.
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Figure 5.6.: Essential Parts of an Explanation.

we defined in Chapter 2. However, as we stated, interpretability is passive and does not

necessarily imply explainability.

In the last question of the first survey question page, we asked participants when they

would accept an explanation (see Figure 5.7). The results show that while most people
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can accept the most likely explanation as valid, this is not enough for the second-highest

number of participants, and they demand provable true explanations. In the category of

others, people accept an explanation if they also know how likely it is preferable as a score

(2 participants). Some would make it context-dependent whether the option exists to have a

provable explanation or not, then they would demand a provable explanation (2 participants).

Lastly, two other participants declared they wanted a reasonable or objective explanation.

Arguably, objectivity is a stronger constraint on an explanation than reasonability because

objectivity is only given when a claim is true, even outside the viewpoint of any subject.

For example, reports after certain incidents like bridge collapses are usually written to

make what happened reasonably explainable. However, if the explanation outcome may be

reasonable, it is unclear whether it is also objectively true absent a particular viewpoint

of a given subject evaluating the incident. Another example is scientific results under

uncertainty, e.g., user studies. What would an objective explanation for a potentially valid

conclusion look like in this case? Analyzing the results, one evident thing is that they are

distinct opinions, with different participants having different constraints on explanations.

Regarding the image of the cat shown with a heatmap overlayed, participants strongly

preferred to see multiple examples before they trusted the explanation. However, they

still favored the heatmap as a means of understanding the reasoning of the AI. Regardless,

while they somewhat accept the heatmap as an explanation, it is not enough to suffice as a

satisfying one.

With the added textual explanation that uses simple reasoning, we could observe a notable

shift in the perception of the explanation. Skepticism about the explanation decreased,

and satisfaction with the explanation is now over 70%. Notably, only the combination of

heatmap and textual reasoning can achieve this level of satisfaction among the participants.
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In this last question, participants were additionally assured that the accuracy of the AI was

very high. This question was slightly changed at approximately one-fourth of the survey

because participants wanted to answer something “other” than the pre-defined responses.

This option was then added. Interestingly, explanation satisfaction was not measurably

as high as the question before. Indicating that the satisfaction is still too ambigous to say

something clearly about it. Others include total satisfaction (2 participant), relatively more

satisfaction but with further own examples (3 participants), own agreement with the AI (2

participants), undecided depends on consequences (1 participant).
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Figure 5.11.: Comparing Optimized Explanations against other XAI methods.

At last, we wanted to know whether our approach of optimizing explanation via aggregation

will result in perceived better explanations (see Figure 5.11). As mentioned above, partici-

pants were shown ten different images from the CIFAR-10 data set. We created different

heat maps with different XAI methods (the same XAI methods and metrics as in the other

experiments) from these images. Participants saw two question pages (out of four) for each

image, with four possible answers each, the optimized version, two other XAI methods

applied, and a “cannot decide” button. First of all, we noticed that certainly numerous

participants used the option rather not to make a decision. Because of the simplicity of the

survey, this behavior could be explained by the fact that no additional context was given to

the participants to make a proper decision, or the XAI methods were perceived as too similar.

Apart from the “dog” and “frog” images, most participants did not choose the optimized

explanation. Our results are also confirmed by performing a t-test regarding the null hy-

pothesis that optimized boxplot’s mean is statistically significantly different than the others
(p-value ≈ 0.0328) and undecided (p-value ≈ 0.0375). We also conducted a binomial test on

the total number of picking the optimized version (𝑘 = 141) compared to the total number of

trials (𝑛 = 28 ∗ 10 ∗ 2 = 560) and an expected probability of twice than an even distribution

(𝑝 = 2

3
) resulting in a clear result that the probability should be less than the expected one

(p-value ≈ 0) [195]. Calculating the confidence interval of the result (with 𝑐𝑖 = 0.95) and

the alternative hypothesis that the probability is less than expected gives a range from

[0, 0.2838]. So, the probability of choosing the optimized version should lay somewhere

between [0.2838, 1
3
]. These are important results that indicate that even after optimizing

an explanation according to different XAI metrics, this does not necessarily map to user

satisfaction with the explanation. So, while XAI metrics seem to be numerically interesting,

their value in an application for the receiving end of a user is not measurable. One could

even argue that our results indicate a negative correlation because participants saw the

optimized explanation two times more than any other XAI method. While conducting the

survey, two participants commented in person about the heat maps. They stated that they

most likely chose the one heatmap that precisely encapsulated the object in question and

potentially highlighted certain important features. This opens up an interesting question:

Each applied XAI method validly explains the AI in question. However, statements like

these indicate that participants have problems separating their mental state from how an

60



5.4. Threats to Validity

explanation should look versus what is a potentially valid explanation, as presented with

the different images. Sadly, we were not able to obtain more statements from participants. If

these indications apply to other participants, then it stands to reason that the development

of AI should integrate explainability as a requirement very early on and develop methods

that allow for some form of integration of the mental models of users. Otherwise, users – as

these two participants – will end up dissatisfied with the explanation of an AI, regardless of

whether it is a valid explanation or the AI is good at what it is supposed to do. This insight

also aligns with the theory of abduction we will investigate in the following Chapter 6.

For all of the figures above, we also investigated whether there were noticeable differences

in the answers of participants according to their highest academic degree, but this was not

the case (apart from the self-reported qualifications).

5.4. Threats to Validity

We now want to discuss the threats to the validity of our survey. This section is divided

into four subsections, each referring to a distinct consideration.

5.4.1. Construct Validity

In this subsection, wewant to discusswhether our surveymeasures the target to bemeasured.

For most of the survey, we wanted to discover specific indications matching this thesis’s

content. Three of the four survey sections were more or less dedicated to discovery, while

the last section focused on evaluating the explanation optimization approach. Therefore,

the first three sections are fine regarding construct validity. However, readers are advised

that the goal was only to show an indication. This indication would be subject to further

research on one’s desires. For example, our explanations were limited to the domain of

image classification, and our methods of explanation were also limited. Other researchers

have conducted user studies with a more diverse set of explanations [107]. For the last

section of our survey, when comparing the optimized explanations against other XAI

methods, we should have introduced different kinds of explanations other than heatmaps

for comparison. At the end of the survey, one participant commented that the heat maps

were not intended for user consumption; therefore, this would explain the high number of

participants answering “undecided”. Hence, some participants stated they wanted more

context in this scenario to be able to decide between different instances. To summarize, it

stands to reason that our survey only applies to this very scenario of heat map comparison

and not in general.

5.4.2. Internal Validity

The survey participants were primarily people who have or want to achieve an academic

degree in computer science. Therefore, the validity of our survey is also limited to this
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specific target group. While we wanted to have a more diverse set of people, this was not

feasible in the short time window we had planned for the survey. To increase the internal

validity, we shuffled and rotated the question as mentioned above. However, the questions

themselves were selected based on fulfilling the interest of this thesis. Usually, every question

had the opportunity to be answered negatively or positively. Sadly, the dropout rate for

this survey was very high. To mitigate the severity of statistical side-effects in including

partial results, these must have been omitted from the analysis. Furthermore, because it

was an anonymous online survey, we could not ask for the reason for not completing the

survey, which would have been interesting to know. We also had planned to integrate the

randomization of the question order for other questions. However, we ultimately went

against it because we were unsure if introducing randomization would also add noise to our

analysis that may not be fully explainable by the change of order. Moreover, we would have

to acquire more participants to measure statistical relevance. However, this would have

allowed us to measure a priming effect on participants in some relevant instances, such as

the question related to the concept of abduction with logical reasoning.

5.4.3. External Validity

The external validity reasons about to what extent a cause-and-effect relationship can not

be explained by the study itself but by other external factors. In this instance, this could be

the daytime and mood of the participants. Because we did not have any controls in place

for external factors, we do not have any means to assess the severity of this aspect. We

tried to make our survey the most accessible and readable by introducing custom changes

to the layout so that participants were not forced to use a specific device to participate in

the survey. Furthermore, there may be external factors in place as to why the dropout rate

of the participants was so high, such as time pressure to arrive at certain events. However,

we could potentially reach more people because we did not require participants to be there

in person to participate in the survey. Furthermore, this could have reduced the Hawthorne

effect of participants behaving differently because they know they are being studied.

5.4.4. Repeatability

One crucial factor for the repeatability of our survey is the selection and generation of the

images for the survey. While the images we provided are all generated based on the XAI

methods andmetrics we used in previous experiments, we can not guarantee different results

when recomputing the images. There are just too many randomized factors that inhibit

this. For example, choosing the weights by which the aggregation happens is controlled

by an evolutionary algorithm. Which strongly makes use of randomization to calculate a

solution. We did investigate multiple runs of the same computation to inspect how much

this could impact the results visually, and we did not see any hard evidence to assume

otherwise, but this is still something to be aware of. This also relates to our results about the

predictive multiplicity in Section 4.4 Experiment 2, by which we investigated the severity

of the predictive multiplicity with different XAI methods. We could measurably show
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differences between consecutive runs only by simply rerunning the same experiment with

different XAI methods.

5.5. Lessons Learned (1)

In this Section, we briefly iterate over what we have learned from the previous Chapter 4

and this Chapter. However, instead of re-iterating each result, we want to take a bird-view

of the results presented.

We have ultimately learned from each of the experiments and user survey that while we

could numerically improve explanations and investigate different aspects of explainability in

the context of FL, the most important factor in explainability remains the human evaluation

part. Based on the limited context of our research, explainability needs to be approached

from a human-centric approach to be meaningful for end users. Still, while we could show

no correlation between optimizing explanations with XAI metrics and user acceptance, this

does not mean that our numerical results should be discarded as not meaningful. For some

applications, it is important to improve specific metrics or stability as we have done, e.g.,

robustness against attacks.

The next Chapter will, therefore, be focused more on the human-centric side of explainability

by taking a multidisciplinary approach to explainability derived from a literature search. In

said Chapter, we will see how nuanced the concept of explainability can become and why

abduction plays a crucial role in accepting explanations.
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This Chapter aims to introduce, exemplify, show, and reason about nuances when it comes

to explainability that are often not accounted for. While we rather gently introduced explain-

ability in the Foundation Chapter 2 – as it is often done in contemporary research literature

– this Chapter will start on a very high level for explainability and focus on essential and

basic elements thereof. The goal of this Chapter is to create a shared understanding of what

is desirable from explainability and why it should be pursued in the presented way
1
.

6.1. Goals and Questions (3)

We define the following research goal and associated questions for this Chapter:

• RG1: Examine the possible viewpoints regarding explainability from other disciplines.

– RG1.Q1: What are different viewpoints on explainability in the research litera-

ture?

– RG1.Q2: What are the most common elements found in these viewpoints?

– RG1.Q3: How can a categorization of explainability be approached?

Granted, our GQM plan cannot define metrics for this Chapter. Hence, we try only to

argumentatively examine different viewpoints on explainability and not evaluate their

applicability. However, as stated before, we will synthesize our findings at the end of this

Chapter.

6.2. Entangling Explainability

In order to assess the explainability of a system, we have already presented several definitions

and metrics in Subsection 2.1.1 of the Foundation Chapter. However, to approach a revision

of the levels of explainability readiness for a broader spectrum of applications, we first

need a means to talk about explanations in a more pronounced way, enabling us to reason

about explanations at an abstract – but still tangible – level. While residing in a computer

scientist’s perspective seems tempting at first, it will most certainly limit any conclusion to

1
This Chapter is solely argumentative; no evaluation of the proposed characterization is done, unlike the

previous Chapters.
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be drawn by technological means. Therefore, we will propose a different, multidisciplinary

approach. This section will present various articles [46, 85, 96, 103, 104, 125, 126, 174] and

their work closely related to describing and modeling explainability. After introducing the

core ideas of each source, we will try to synthesize our findings. This way, readers are

invited to follow the thinking process that leads to our conclusion and, later on, to our

model for assessing the explainability of a system.

6.2.1. Explanations as Proofs

It is reasonable to assume that while we already defined the term explanation in Chapter 2,

other fields of research use different definitions. Indeed, “[t]heories of explanation date

back at least as far as the times of Plato and Aristotle [. . . ]” [174]. Aristotle, also commonly

known as the father of logic, inspired the predecessor of all other research fields: philosophy.

In philosophy – or more precisely, the philosophy of logic – explanations can be seen as

proofs [174]. These proofs can be categorized into deduction, induction, and abduction [85,

125].

Definition 6.2.1 (Induction) “An inductive generalization is an inference that goes from the
characteristics of some observed sample of individuals to a conclusion about the distribution of
those characteristics in some larger population.” In essence, induction is a form of generalization.

All observed A’s are B’s.

Therefore all A’s are B’s. [96]

Often, in inductive reasoning, it is necessary to distinguish between the “event of observing

some fact and the fact observed”, because the conclusion in the induction can only explain

the observation but not the underlying facts that are indeed being observed. This becomes

evident in a simple example of drawing randomly balls from a hat, where all balls are red. If

one draws a ball from the hat, we anticipate that the ball must be red (because all observed

balls are red). However, the induction can not explain why the particular instance of a

ball is red in the first place; it can only suggest that there may exist a cause in relation

to all observed balls being red (all A’s were B’s). The generalization can not explain the

instance itself [96]. Inductive processes also play a crucial role in how we currently conduct

XAI. For example, if one trained an ML model to classify cats and dogs with high accuracy

and then wanted to explain the classifier with current state-of-the-art XAI methods, one

would probably observe that all images that contain whiskers and pointy ears are correctly

classified as cats. The XAI method would highlight these features – as shown in Figure 6.1.

Given these observations, we can now assume, or rather create the explanatory hypotheses,

that the classifier will likely classify every image with whiskers and pointy ears correctly

as cats. However, this conclusion is misleading and leads to a wrong understanding and

usage of XAI methods. In this example, we implicitly based our explanatory hypothesis

on inductive reasoning without proper recognition thereof. Notice the distinct difference

between explaining an observed event and explaining the underlying fact, as we mentioned
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Input ScoreCAM [184]

Figure 6.1.: XAI Method applied to ResNet-50.

above. Rather than explaining why a particular instance is a cat, we only (can) explain the

observed event that all images containing whisker, and pointy ears are cats, but not why

this is the case in the first place. This example makes it even more necessary to recognize

XAI methods as explanatory hypotheses-forming techniques rather than – strictly speaking

– explanation techniques because one would assume that an explanation provides also the

necessary reasoning of the underlying fact. By this reasoning, induction does not suffice to

cover the explanatory hypotheses space adequately.

Definition 6.2.2 (Deduction)

𝐴→ B and A is true.

Therefore B.

Deduction follows an inverse approach to induction. A statement is deductive valid, if
and only if (iff) the conclusion follows from the premises [96]. We can observe deductive

reasoning, for instance, in rule-based systems. Applying XAI is straight forward in this

case because the rules explain the prediction of the model. If one wants to execute a model

prediction on a specific instance, then all that needs to be done is to evaluate the rules

leading to a conclusion. However, therein lies another fallacy that is often omitted because,

in deductive reasoning, one must distinguish between validity and soundness. Referencing

our above cats and dogs example, we can easily create a valid deductive explanation of why

the classifier predicts cats correctly. Given the two premises, which are that all cats have

whiskers and all dogs have no whiskers, one can deductively reason that the classifier is

valid if it recognizes an image with whiskers and predicts a cat (see Figure 6.2). However,

validity alone does not suffice for soundness because, for soundness, the premises must

be true in all cases. If, however, our classifier sees an seal, and recognizes the whiskers,

Has whiskers?

dog cat

false true

Figure 6.2.: Simple Rule-based Classifier.
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then it would be a valid deductive argument to assume, that the seal is a cat, but obviously

this is not a sound explanation
2
. Again, the term explanation is overloaded and unspecified

compared to the correct depiction of explanation forming through generating explanatory

hypotheses. By reasoning about the example mentioned above, we still need to catch –

something – to cover the explanatory hypothesis space adequately. In the next paragraph,

we will introduce the concept of abduction, which is essential for understanding what we

mean with explanatory hypothesis space in the first place.

abduction prediction

data space

explanatory hypothesis space

Figure 6.3.: Visualization of Abduction in Contrast to Prediction [96].

While induction and deduction are undisputed parts of any valid proof-based system,

abduction stands out as a somewhat controversial inclusion [85, 96, 130].

Definition 6.2.3 (Abduction in Philosophy) “Abduction, or inference to the best explana-
tion, is a form of inference that goes from data describing something to a hypothesis that best
explains or accounts for the data. Thus abduction is a kind of theory-forming or interpretive
inference.”

𝐷 is a collection of data comprising facts, observations, assumptions.

𝐻 explains D sufficiently.

No other hypthoses explains D as well as H.

𝐻 is probably true. [96]

The concept of abduction – stipulated by Charles Sanders Peirce (1893) – has been known

in AI research since at least 1987, when the authors Charniak et al. [31] characterized

abduction as “modus ponens turned backward, inferring the cause of something, generation

of explanations for what we see around us, and inference to the best explanation” [96]. It

should be noted that abduction is not limited to the generation process of the explanatory

hypothesis but also includes the evaluation of which explanation is probably considered

the best explanatory hypothesis [96]. In contrast to deduction, abduction is a matter of

judgment of likelihood and acceptance of the explanatory hypothesis. The considerations

2
There exists also selective cat breeds without whiskers.
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of accepting an explanatory hypothesis are primarily based on plausibility, explanatory

power, and pragmatic considerations:

1. Does 𝐻 decisively surpass all alternatives?

2. Does 𝐻 decisively support itself (not considering weighing alternatives)?

3. Is the data reliable?

4. Is there confidence that all plausible explanations have been considered?

5. What are the costs for inferring and evaluating alternatives?

6. Does a decision need to be taken promptly?

As the authors Josephson further state: “[A]bductive inference depends on an evaluation

that ranges over all possible hypotheses, or at least a set of them large enough to guarantee

that it includes the true one.” While it is generally anticipated that the best explanation is the

true one, in light of not having direct access to a judgment of truth, one needs to fall back on

“a summary judgments of accessible explanatory virtues. [. . . ] Abductions are fallible, and

doubt cannot be completely eliminated. Nevertheless, by the aid of abductive inferences,

knowledge is possible even in the face of uncertainty” [96]. The authors Josephson, even

recognizes the process of abduction as several optimization problems where the target is:

• “[M]aximizing explanatory coverage consistent with maintaining confidence above

some preset threshold.”

• “[M]aximiz[ing] explanatory coverage while minimizing specific kinds of error costs.”

• “[M]aximizing explanatory coverage in a given amount of processing time.”

In the article [85] from the authors Hoffman, Miller, and Clancey, they argue that XAI

should develop “systems capable of engaging in meaningful interactions with people to

support their abductive reasoning” (emphasis added). They proceeded to say, “[XAI] has

the purpose of helping people develop good mental models of how the AI system works and

when, why, and how it fails. [. . . ] The user learns and benefits from the AI, but additionally,

the XAI improves based on the actions and feedback of the user, such as improving its

ability to adjust [. . . ] or eliminate certain hypotheses”. The hypotheses meant here are

the explanatory hypotheses of the user interacting with the XAI system. This notion of

defining XAI integrates several desirable key aspects. First, XAI involves an active dialog “in

which an explainer and a learner collaborate, explore, and co-adapt.” Second, it allows the

definition of true self-explainable systems because users are enabled in their “abducti[on]

to understand what, how, and why the AI does what it does.” Lastly, “abduction depends

on propositions from the reasoner’s knowledge – propositions that come from beyond the

given rule and the given observation” – which is inherently different from inductive and

deductive reasoning. By respecting this last aspect, XAI systems are argued to be aware of
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context and the implicit knowledge of the reasoner [85]. As seen in the paragraph above,

this is often crucial to build sound explanatory hypotheses. Appendix Table A.1 presents

an overview of proposed explainability requirements to support abductive reasoning in AI.

Figure A.2 in the Appendix describes the abduction process graphically.

Considering our cats and dogs image classifier example, the abductive process starts with

an observation that the deployed XAI method marks whiskers and pointy ears in a given

image and classifies them consistently as cats if these features are present. Now, we can

start forming explanatory hypotheses about the classifier. The apparent hypothesis from a

user is that the classifier detects the whiskers and pointy ears and classifies them as cats.

However, this explanation is just a hypothesis that needs to be evaluated first based on the

abovementioned considerations. If we consider the explanation sound at this early stage

without further evaluation we would just fall back to inductive reasoning. Ultimately, we

want AI to help us with our abductive reasoning, particularly in generating and evaluating

appropriate explanatory hypotheses. However, in light of not having access to such an AI

the user is responsible for the abductive reasoning process. To evaluate the explanatory

hypothesis, one could test the classifier with images of animals with whiskers or pointy ears,

cats without whiskers or pointy ears, or dogs with whiskers or pointy ears and see how the

classifier and the deployed XAI method react to it. While testing these examples sounds

daunting, it is the most reasonable approach to ensure that the explanatory hypothesis is

the most likely one. More importantly, it enables the user to understand better how the

image classifier works without exposure to technical aspects of the ML model. Now, it

is likely that a user is not satisfied with the explanatory hypothesis after conducting an

evaluation as outlined above. Either it is because of the evaluation results, meaning that the

ML model does not perform as expected, or the explanatory hypothesis is still considered

unsatisfactory. In both cases, the user gained significant knowledge about the system

in question and is enabled to assess it better. Furthermore, it is still possible to evaluate

other explanatory hypotheses. Enabling abductive reasoning does not mean enforcing

the acceptance of explanatory hypotheses or accepting the predictions of an ML model in

general. It is just a way of theory-forming and inference to the best explanation [96].

Given this introduction to abduction, we will now reconcile results from the subdiscipline

of computational logic in computer science [112]. Here, abduction has been known in

the form of abductive logical programming since at least the early 1980s [113]. The most

prominent figure in this field is Prof. em. Robert Anthony Kowalski, a major contributor to

the programming language Prolog and winner of the IJCAI Award for research excellence

lifetime achievements in the year 2011 [92].
3
Certainly, his paper, Algorithm = Logic +

Control is one of his most recognized ones [111].

Definition 6.2.4 (Abduction in Computational Logic) An abductive program is a triple
⟨𝑃, 𝐼, 𝐴⟩, where 𝑃 is a logic program, 𝐼 is a set of integrity constraints, and𝐴 is a set of abducible
predicates (also known as abducible hypotheses). Given the triple ⟨𝑃, 𝐼, 𝐴⟩ and a goal clause 𝐺

3
Some of his research is currently under revitalization under the term Neuro-Symbolic AI [165].
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(also known as observations), an abductive solution (or explanation) of 𝐺 is a subset Δ of 𝐴,
such that:

𝑃 ∪ Δ ⊨ 𝐺

𝑃 ∪ Δ ∪ 𝐼 is consistent. [74, 93, 98, 113, 114]

Note: Sometimes, it is also stated that 𝑃 ∪ Δ shall be a minimal model, which is automatically
the case when using Horn Clauses [113].

Abduction, as presented in Definition 6.2.4, is commonly referred to as non-monotonic

reasoning because abducible hypotheses may become invalid if new evidence or rules are

added [68]. The integrity constraints 𝐼 , are often in the form of denials so that specific ab-

ductive hypotheses are rejected, because, e.g., they would result in logical inconsistencies.

Now, reconsider our cats and dogs example from above; it can be represented in the following

logical program with 𝑃 being the program, Δ = {𝑐𝑎𝑡, 𝑑𝑜𝑔, 𝑠𝑒𝑎𝑙} as our abducibles and only

one integrity Constraint 𝐼 , as shown in Line 15.

Algorithm 5 Cats and Dogs Classifier based on abductive logic

Input: Occurence probabilities of ⟨𝑝𝑐𝑎𝑡 , 𝑝𝑑𝑜𝑔, 𝑝𝑠𝑒𝑎𝑙⟩.
1: % Probabilities assignment.
2: 𝑝𝑐𝑎𝑡 :: cat.

3: 𝑝𝑑𝑜𝑔 :: dog.

4: 𝑝𝑠𝑒𝑎𝑙 :: seal.

5: % Logical Program.
6: is(X) :- X.

7: whiskers(X) :- X = cat, is(X).

8: whiskers(X) :- X = seal, is(X).

9: ears(X) :- X = cat, is(X).

10: ears(X) :- X = seal, is(X).

11: ears(X) :- X = dog, is(X).

12: animal(X, Y) :- X, Y.

13: animal(X) :- X.

14: % Integrity Constraints.
15: whiskers(X) :- X = dog, not(is(dog)).

Algorithm 5 has been written in Problog, which utilizes a subset of the Prolog commands [47,

71]
4
. The added benefit of using Problog is that it allows us to add a probabilistic model on

top of our logical model, which facilitates the meaning of inference of the best explanation
because the best explanation can then be expressed as also the most likely one in terms of

probabilities. For example, suppose the program is now queried with Query 6. In that case,

4
Concretely it uses the Yet Another Prolog (YAP) compiler https://www.dcc.fc.up.pt/~vsc/yap.
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Query 6 Abducting Animals with Ears

?- query(animal(ears(X))).

animal(ears(cat)) : 𝑝𝑐𝑎𝑡
animal(ears(dog)) : 𝑝𝑑𝑜𝑔
animal(ears(seal)) : 𝑝𝑠𝑒𝑎𝑙

it will list all possibilities of what X can be substituted for – a process commonly referred

to as unification – and additionally respect and show the associated probabilities that X is

the case. In this example, it would substitute X for cat, dog, and seal and their associated

probabilities. The process by which Problog tries to solve subgoals that are defined in goal

clauses is also referred to as backtracking. To compute explanatory hypotheses like that

is certainly a noteworthy achievement and makes the usage of abduction also practically

applicable. Also, because we use a logic program to form these hypotheses, our explanations

are fully explainable by design.

6.2.2. Explanations as Causal Reasoning

𝐴

𝐵

𝐶

(𝑖 )

𝐴

𝐵

𝐶

(𝑖𝑖 )

𝐴 𝐵 𝐶

(𝑖𝑖𝑖 )

𝐴

𝐵𝐶

(𝑖𝑣)

Figure 6.4.: Overview of Common Causal Relations [174].

Causal reasoning is another way of referring to explanations [104, 174]. Causal relations

can often take the following forms (see also Figure 6.4):

(i) Common Cause: A single cause can be identified that provides all the information

necessary to explain an explanandum 𝑋 . Notice that this cause can result in multiple

branches of causes and effects afterward. However, these can be backtracked to this

single root cause.

(ii) Common Effect: Several causes can result in a singular effect; knowing the causes

suffices as an explanation.

(iii) Linear Chains: A linear chain of causes and effects. Backtracking the chain suffices

as an explanation.

(iv) Causal Homeostasis: These explanations reason about the reinforcement or circle-

like stability of a systems property and follow the form 𝐴 → 𝐵 → 𝐶 → 𝐴. For

example, a good mood leads to work being done, which leads to self-esteem, which

leads to a good mood. Notice that every point in this chain can suffice as a starting

point for an explanation.
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For humans, these cause-and-effect relations often suffice as an explanation. While it is

related to the proof-based reasoning we introduced at the beginning of the section, it is still

different, because it does not have this strict connection to the field of logical calculus in

philosophy. Another instance of causal explanations are counterfactuals – commonly known

as “what if?” questions. Producing counterfactuals “involves imagining alternatives to one

or more features of a perceived event” [131]. To produce a counterfactual explanation, one

needs to be able to reason about cause and effect, which shows a form of high intelligence

we desire in intelligent computer systems [131, 173]. In XAI, counterfactuals are also

perceived as intuitive and helpful in generating explanations that satisfy users [138]. Indeed,

in the previous section, we deliberately used counterfactuals to evaluate the explanatory

hypothesis for our image classifier example by imagining and then evaluating variations of

specific features in our explanation.

6.2.3. Explanations in Social Science

Lastly, explanations can be seen as related to social systems [46, 103]. In [103], the authors

applied Luhmann’s social system theory (see Definition 6.2.5). The three aspects of informa-

tion, utterance, and understanding are further highlighted by the authors Keenan and Sokol

and directly mapped to XAI. The viewpoint from social science is different from others

because it pronounces the importance of modeling relationships and the effects thereof

between agents, as well as distinguishing understanding from communication.

Definition 6.2.5 (Luhmann’s System Theory) “Systems theory is [. . . ] concerned with
the conditions and operations of meaningful communication. According to the theory, society
is a complex of self-referential autonomous systems of communication. Communication is a
self-organising process of differentiation that, independently of any central control, evolves and
differentiates codes and structural processes, and does so using only its own processes. Systems
make meaning possible by reducing the complexity of the world in order to communicate
about it, which in turn makes society more complex as it communicates about itself and its
environment. [. . . ] [N]o system communicates directly with any other system and information
cannot “transfer” from one system to another. Rather, each system observes other systems as
elements in its environment, and responds to its observations of other systems only on its own
terms. [. . . ] In each communication, understanding is the key moment; it occurs through the
drawing of a distinction between selected information and utterance. Understanding – the
making of meaning – is observer dependent and arises in the decoding of what is communicated
from how it is communicated” [103].

The authors Dazeley et al. also regard explanations as a social process. In their paper [46],

they present a framework called Broad-XAI. This framework divides explanation into a

social and cognitive process. First, they present levels of explanation as a bottom-up model

inspired by animal cognitive ethology’s levels of intentionality. This model comprises:
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• Zero-order (reactive) explanations: “an explanation of an agent’s reaction to

immediately perceived inputs.” These explanations are considered the foundation for

all other explanations.

• First-order (disposition) explanations: “an explanation of an agent’s underlying

internal disposition towards the environment and other actors that motivated a partic-

ular decision.” These are questions regarding the agent’s “current internal disposition

and how it influenced its reaction.”

• Second-order (social) explanations: “an explanation of a decision based on an

awareness or belief of its own or other actors’ mental states.” Questions regarding the

anticipation of other agents’ behavior are included here.

• Nth-order (cultural) explanations: “an explanation of a decision made by the

agent based on what is determined is expected of it culturally, separate from its

primary objective, by other actors.” “This level of reasoning is equated to third-order

intentionality [171] because person A, not only has a model of what person B will do,

but recognises that person B will expect person A to do likewise — and vice versa.

This represents an ever increasing recursive level of mentalisation [128,129] indicating

an understanding of a set of cultural rules about behaviour.”

• Meta (reflective) explanations: “an explanation detailing the process and factors

that were used to generate, infer or select an explanation.” Encompasses the idea of

reflection on the explanatory process. This process happens orthogonal to the levels

above.

In addition to what they call social process, they also suggest a cognitive process that utilizes
(i) perception, (ii) a Merkwelt Model (agents’ internal model), (iii) an actor’s Model (model

of other agents), and (iv) a behavior model (mapping that combines all aspects mentioned

into agent behavior) [46]. The concept of a Merkwelt Model is derived from mental models
in cognitive sciences. Mental models are internal, highly individual representations of

the workings of a system. Explanations are derived from instantiation and interpretation

of the mental model, which often involves simplification [104, 174]. Again, this model is

targeted more towards agent-based systems. Indeed, the authors applied this concept to

reinforcement learning-based agents in a recently published article [45]. Our simple image

classification example does arguably not incorporate any social or cultural component that

we can leverage; therefore, we propose another example based on connected autonomous

vehicles. In this example, autonomous vehicles need to be able to react to observations they

made of the environment, for example, seeing a stop sign. Furthermore, they often need to

anticipate their behavior in advance, for instance slowing, down when seeing a stop sign

or changing lanes. However, they also need to anticipate the behavior of others, such as

pedestrians crossing the road. While we could attribute these effects to causal reasoning, it

is somehow still distinctively different than that because it does not capture the cognitive

elements associated with a social process (e.g., thinking about the internal disposition of

others). However, it is also different than a solely cognitive process because it does not

holistically capture the complexity of what scholars mean when they use the term society
to describe such a system.
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6.2.4. Abduction as the Unifying Element

In light of the research presented above, a general categorization of explainability levels is

still not directly feasible, at least if we strive for completeness and a multi-faceted view of

explainability. While each of the papers above presented a unique approach to explainability,

they inherently still share common elements that can and – we argue – should not be

separated.

Instead, we propose a different approach with abduction as the essence of explainability. We

adopt the notion of an explanatory hypothesis space that can be utilized to refine explanations.
This way, we can define explainability as a problem of choosing the right explanatory

coverage, as presented above. Based on our research, we propose dividing the explanatory

hypothesis space into social, cognitive, causal, and abductive hypothesis spaceH . Figure 6.5

visualizes this approach. The distinction is adopted as presented in the section above. While

we show a distinct separation, this may not always be true. The task of explainability

practitioners is now to find the explanatory hypothesis space that most suits their individual

needs. We could enforce a separation by further specifying boundaries – e.g., through

associated characteristics – but we argue that the notion of “correctness” remains ambiguous.

The proposed model also aligns with most current available XAI methods because we do not

have – and neither produce – ground truth explanations. Instead, XAI methods generate

explanation hypotheses based on mathematical properties that are then assumed proxies of

a ground truth explanation. Introducing the notion of explanatory hypothesis does clarify

this difference decisively. We now want to build upon our introduced notion of H and

explore characteristics of it. In the paper: “Explanation Is Effective Because It Is Selective” ;

abduction prediction

data space

explanatory hypothesis space

cognitive

socialcausal
H

(abductive hypothesis space)

Figure 6.5.: Combining Different Views with Abduction.

the authors reason about two observed phenomena in human explanations [126]. First,

we observe that the process of “seeking, generating and evaluating explanations [actively]

support learning and generalization[. . . ].” By seeking explanations from others and world

phenomena, as well as explaining them to others and ourselves, human learning can be

facilitated. They argue that this process works most for humans because of the selectivity

by which we seek and evaluate explanations. This leads to the second observation: Humans

tend to seek explanations only for a subset of encountered phenomena. Not only that, even

if we seek explanations, we are also selective in evaluating what we consider a satisfactory

explanation or not. We can map the concept of phenomena selectivity and explanation
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satisfactory to our introduced notion. Phenomena selectivity can be interpreted as the fact

that only some points of our data space can start the process of abduction, which results in

the seeking of explanations. We notice that this introduces another necessary adjustment to

our unified model. Our data space now needs to be able to capture the phenomena selectivity.

One approach would be associating the abduction process with probabilities dependent on

the subject that seeks an explanation. Another approach would be to redefine the data space

as inherently subjective, so instead of considering it as ground truth and universally agreed

upon, the data space itself depends on the subject in question. So that different subjects

perceive the data space differently. On a side note, the last notion ties back to the Rashomon

Effect we described in the Foundation chapter. The name “Rashomon Effect” was chosen

by Breiman because of the equally named Japanese movie羅生門, Rashōmon [23]. In this

movie, each character witnesses the same crime but testifies differently. It becomes evident

that human perception can never reflect the exact reality. This finding is fundamental

in today’s philosophical, epistemological theory – also known as the “problem of basic

statements” [152]. In that sense, we do not introduce a notion of ambiguity in our model by

introducing subjectivity, but instead, we recognize the fact that reality itself is perceived

subjectively. We still need to address the selectivity of what is deemed a satisfactory

explanation. In the paper above from Lombrozo and Liquin, they argue that selectivity

comes partially from the intrinsic recognition that selectivity promotes effective learning.

In essence, selectivity serves a purpose or goal even if the individual does not recognize this

directly. The paper itself limits the purpose to promoting effective learning. However, we

argue that this can be further extended to any goal an individual seeks, either knowingly

or unknowingly. While the authors Josephson primarily focus on logical and pragmatic

conclusions to accept an explanatory hypothesis, we argue that this notion lacks human
characteristics [96]. In our view, the acceptance of an explanatory hypothesis comes from a

sufficient overlap of an individual’s value system with the perceived intrinsic and extrinsic

values that an explanatory hypothesis provides. If the perceived sum of values exceeds a

certain threshold, an individual considers the explanatory hypothesis satisfactory. This also

means that the explanatory hypothesis space H must include all necessary information

to deem an explanation satisfactory. The segmentation of the hypothesis space H into

the fundamental components of social, cognitive, and causal that we collected by literature

research provides the most common denominator we found.

While keeping our current abstraction level
5
, we can now define the properties of robustness,

faithfulness, and complexity on our unified model [40]. Robustness in XAI – or often also

called sensitivity – is usually defined as a measurement of how much explanation changes

when the input is perturbated (often considering only small changes) [40]. Looking at

Figure 6.5, we can see that our explanations suffice robustness if the abductive hypothesis

spaceH stays the same after perturbation in the data space – or at least close to the same

when we allow for minor changes. However, this property is insufficient for faithfulness

because different abduction processes can still come to the same abductive hypothesis

spaceH regardless of whether the data space stays the same. For this reason, faithfulness

must suffice that the predictions we draw from our abductive hypothesis spaceH points

back to the data space that started the abductive process. Lastly, complexity measures

5
For more formal and concrete definitions see [7, 8, 18, 40, 97, 141].
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how complex explanations are for human comprehension. For this, we assume that the

representation of an explanation is encoded in our explanatory hypothesis spaceH . This

ties back to the selectivity of explanations we reasoned above, with the result that the

explanatory hypothesis space must encode all information necessary to deem an explanation

satisfactory.

Important: Why do we need abstractions?
As the authors Josephson point out: “When reasoning about complex systems, both

human experts and expert systems are necessarily compelled to use high-level, qualitative

symbols, whether or not complete numerical models are available.”

This can be exemplified in a simple image recognition task of a cleaning robot.

Figure 6.6.: Image of a Spilled Cup of Liquid.

Even if the operation and perception of the robot can be described numerically, to

recognize that the cup has been spilled, it is far easier to reason about it on a high-level

symbolic abstraction than on a numerical model. Given the image, simply by inferring

very basic primitives like “table”, “water”, and “cup vertical”, we can abduct that the most

likely explanation of this scene is that the “cup has been spilled”. This high-level symbolic

reasoning is challenging for pure neural network-based AI because it had to be trained on

it beforehand – with a potentially large set of training data, which might not be available

– and furthermore, it could still produce unpredictable, undesired results – defying even

the most basic reasoning. With abduction and our unifying model, we have at least a

model that acknowledges that an explanation might be wrong. Moreover, this type of

reasoning about the underlying problem structure would not be possible without the

abstraction used throughout this whole chapter for reasoning about explainability. While

human experts sometimes need to switch to the numerical representation, “the numerical

analysis [remains] under the overall control of a qualitative, symbolic reasoning system

[by the human expert].” [96]

To foster the validity of our model, we will now apply it to an example in the autonomous

vehicle industry.
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Example:
A large number of scholars consider autonomous driving vehicles beneficial to society

because they promise to reduce accidents and improve economic aspects like energy

consumption. This becomes especially important in light of yearly ≈1.19 million deaths

as a result of car crashes and the fact that road injuries are the leading cause of death for

five to 29-year-olds [145].

For our example, we consider an autonomous vehicle, which satisfies level four in the

J3016 standard proposed by the Society of Automobile Engineers [158]. These vehicles

are capable of autonomous driving under certain conditions, which include lane changing

– which is amongst the riskiest maneuvers –, pedestrian detection, and advanced path

planning [148]. Now, to apply our unified model, we need an observation that sparks the

interest of the vehicle driver to start the abductive reasoning. In this example, we may

consider the autonomous changing of the lane as the starting point of abductive reasoning.

Noticing the lane change, the driver wants to know why the car just changed the lane;

if the driver is used to similar behavior in the past, it is very likely that an explanatory

hypothesis has already been formed, and only the confirmation thereof is necessary –

granted if the driver even deems this necessary. On the other hand, if the driver is not

aware of an explanatory hypothesis, further assistance from the vehicle is required. This

assistance should provide the driver with at least one explanatory hypothesis as to why

the vehicle executed the lane change. There could very well be multiple reasons, but

ultimately, the one that is the most satisfactory will also be the one that persuades the

driver to accept it the most. For the driver to accept an explanation, the explanation

should encompass social, cognitive, and causal components that align with the driver’s

value system. Consider the following explanatory hypothesis provided by the vehicle:

“Lane change was sought out to save fuel.” This explanation can be inherently problematic

given a particular driver’s value system; while it may be socially adequate to save as much

fuel as possible to reduce the environmental footprint, certainly not all drivers would be

satisfied with such an explanation. If this were not an abductive process, we would now

stop further reasoning because the system gave its explanation. However, through the

abduction process, we can utilize another process: the co-adaption between driver and

vehicle. This co-adaption process aims to allow the driver to explore the explanations

provided by the vehicle and ultimately will enable the vehicle to understand the driver’s

disposition and adapt itself to it. For example, the driver might further ask the vehicle

how much fuel it saves, and the driver deems the value of the answer as negligible and

can give the vehicle feedback on what value he would consider significant enough to

justify lane changes in future events. Counterfactuals as part of the causal reasoning can

also play a role here; given the answer of the vehicle, a counterfactual question would

be: “What if the fuel saving is half of that? Would this still justify the lane change?”

Notice also the implicit causal reasoning of lane changing as a cause for the effect of fuel

being saved, which we have not explicitly acknowledged yet. We could also attribute this

reasoning as inductive – therefore cognitive – assuming that changing the lane to the

slower one does, in general, save fuel.
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An interesting use case for FL is given in the medical industry and will be presented in the

following. The to-be-presented use case actively uses FL and XAI. However, we will also

include additional concepts like differential privacy if needed. This way, we can reason

about explainability with a concrete example using FL and XAI.

Use Case:
The most prominent use case for FL is in the medical field

†
. FL promises to preserve

data privacy by mitigating the need to consolidate the data before training an ML model

happens [62, 157].

𝜔Γ
1

𝜔Γ
2

𝜔Γ
3

𝜔Φ 𝜔Φ
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Figure 6.7.: Hospital Use Case Overview with FL.

Imagine the following scenario: Several hospitals are interested in applyingML techniques

to the screening process of medical image data, e.g., detecting abnormalities in tissue

samples. This pre-screening process happens orthogonal to the already established process
of doctors looking at the images themselves. While this approach may not completely

erase the need for a doctor to look at the medical images, it promises to reduce the time a

doctor will take to look at them, and it will give doctors additional assurance if something

abnormal is indicated to proceed with escalating the instance for further diagnostics.

However, some key questions need to be addressed.

1. A simple indication (benign or malignent) may not be as helpful to the doctor

because he can not infer, why the ML model decided this way. Not understanding

the reasoning behind the model’s decision would significantly hamper trust in the

pre-screening process and also limit further diagnostics.

2. From a doctor’s perspective, the well-being of the patient is of the utmost importance.

There are serious concerns that the ML model could harm the patient by facilitating

misdiagnosis. For example, pre-screening could lead to a quality decrease in the

screening process, and wrongful escalation of instances. Harm that stems from

breaches of confidentiality regarding the patient data and, lastly, biased predictions

in the ML model.

3. Given each hospital’s data set size, it is not directly feasible to train an ML model

with it, that would achieve a high enough accuracy. Because of (2), consolidating

the data is not possible. Another approach would be to share the ML model, train

it on the local data of one hospital, and then hand it to the next one. However,
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this would lead to a strong recency bias in the ML model, and it would be prone to

model inversion attacks.

To tackle these problems, the concept of FL with XAI seems fitting (see Figure 4.6). With

FL, we are able to train an ML model without sharing the patient data to achieve a high

model accuracy (this could also be enhanced by using differential privacy mechanisms to

decrease the risk of model inversion attacks). Furthermore, by applying XAI methods,

we can make the predictions of the ML model better understandable for the doctors.

However, before we focusing too much on the technologies, let us try to decipher the

term explainability in this context based on the theoretical foundations we laid beforehand
(see Table 4.1).

Element Description

System 𝑆 Group of hospitals connected via a network. A

central instance managed by a trusted third party,

called fl server, is responsible for managing the fed-

eration. Each hospital represents one fl client par-
ticipating in the federation with its own respective

set of medical patient data.

Target Group 𝐺 Medical personnel, e.g., medical doctors (Dr. med.),

x-ray technicians.

Context 𝐶 Pre-screening process of medical image data taken

from patients of the respective hospital.

Explanandum 𝑋 Diagnosis of theMLmodel regardingmedical image

data taken from patients of a given hospital.

Aspect Y Suspicious parts of the patient’s medical images

that lead to the diagnosis of the ML model.

Data Space An abstraction of the real world in terms of data. In

this case, themost important aspects are themedical

images of a patient, the explanation provided for the

prediction, and the system itself the user interacts

with.

Prediction Predicted diagnosis of the ML model in the pre-
screening process.

Explanatory Hypothesis Space An abstraction of the reasoning process of a user in

the target group 𝐺 .

Table 6.1.: Explainability Elements That Need to Be Identified.

With the most necessary elements defined, we can now go into more detail about ap-

proaching the problem. Granted, some elements are still very much abstract – namely,

the data space and the explanatory hypothesis space – but they are abstract by design,
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because otherwise we would not be able to express them adequately. We will not go into

implementation details regarding the proposed use case; this was shown in Chapter 4,

where evaluated closely related experiments applicable to this use case. Instead, we will

now focus on expectation management.

Expectations and Goals

As presented in the sections before, the term explanation in the context of XAI is over-

loaded and inherits a strong connotation of giving ground-truth explanations for an
explanandum. Therefore, the expectations one has regarding the explainability of a

system in question are usually ill-defined to begin with. So, let’s concretely devise what

is to expected in this use case scenario of an explanation. Because we will use an ML

algorithm for the multiclass classification problem, we are bound to use XAI methods

that can work with these algorithms. Having a good overview of XAI methods will

lead us to the conclusion that the explanation will most certainly be a heat map of the

original image that will show the most relevant areas of the image that lead the ML model

to its prediction. While the concrete XAI method will dictate how the importance of

the prediction is measured, it suffices to say that simply some pixels of the image have

been selected as more important than others in the prediction of the ML algorithm. It is

important to understand that this is not what we mean as an explanation in the context of

our unified model – it is simply just data in the data space. The concrete explanation will

be devised by the abduction process of the user in the target group𝐺 , forming explanatory

hypotheses. We can not expect the XAI method to “inject” understanding into a user’s

consciousness.

As software engineers, we are also interested in specifying how to verify and validate

explainability, e.g., what will be written in our specification document. While we can

not anwser this question in the context of this thesis, we will weigh alternatives of

how to approach FL and XAI against each other and provide recommendations for

implementation.

†
Interestingly, the concept of abduction – which was extensively discussed by the authors Josephson [96]

– also used the medical context (creation of diagnosis hypotheses) for reasoning about explainability, as

well as the authors in [150].

6.3. Approaching a Categorization for Explainability

Based on our findings and remarks in the last section, we can reason about assessing the

explainability of systems. Figure 6.8 shows our proposed approach, which we will present

in the following.

Figure 6.8 comprises four categories we extracted from our analysis and the examples

presented in the last section. These categories are ordered as indicated in the figure, and

each category has its own fulfillment score associated, meaning they are independently
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1presentation /

perceptibility

2

reasoning

3 questioning /

judging

4

feedback

Figure 6.8.: Proposed Explainability Assessment Categorization.

calculated from each other. Therefore, instead of proposing a – strictly speaking – level-

based approach, we propose a fluid, continuous categorization.

The first category is presentation / perceptibility. This category indicates how well the

system in question can make observed phenomena that occur during operation perceivable

by the user. A good perceptibility score is important to highlight events that can trigger the

user’s abduction process. Only what is made perceptible by the system can also be the target

of an explanation seeking by the user. Additionally, we include the event’s presentation in

this category because how something is presented can influence the user’s perception of it.

There is also a point to distinguish between making relevant and non-relevant phenomena

available to the user. For example, a system could present everything to the user. However,

such a system should score poorly in this category.

Next, we have the category reasoning. A system needs the means to generate or list explana-

tory hypotheses to the user. The score in this category indicates how diverse (quantity) and

how good the explanations are (quality). For example, an explanation that plainly states

observations does most likely not help the user in understanding the phenomena to be

explained. On the other hand, even if an explanation is – by quality aspects – good, a user

may still prefer a different type of explanation, for example, a counterfactual one to help

him in their abduction process.

In the second last category questioning / judging, we score the capability of the system to

allow the user to question and judge the explanatory hypotheses the system may provide.

This category captures how well the system allows the user to explore – through their

abduction – the explanatory hypotheses space. For example, a system that can be questioned

by the user in the form of counterfactuals would certainly score very high in that regard.

Meanwhile, a system that does not allow for this degree of freedom would score much

less because it does not allow for a meaningful exploration of the explanatory hypotheses

space by the user and, therefore, limits the explainability of the system. While the first

two categories are commonly seen in current research literature about explainability, this

category, and the next are still unexplored. One reason is that it is tough to develop systems

that would score high in this regard.
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Lastly, we have the category feedback. This category scores the system’s capability to

co-adapt based on the feedback that the user provides while interacting with the system. For

example, a system that would score high in this category can presumably infer adaptions

by suggestions incorporated in the line of questions by the user. However, also more direct

means are imaginable. A system that adapts to context and the user can arguably also

provide better explanations.

6.4. Remarks

In this Section, we first want to reconcile what is still open for discussion given the proposed

classification approach described in Section 6.3. Then, we will briefly discuss the concept of

abduction regarding the design, evaluation, and methods. At last, we want to summarize

what we have learned from this Chapter and how it informs this thesis.

6.4.1. What is Missing?

If one wants to use the proposed categorization, it becomes evident that to assess a score for

each category, one needs guidelines or reference values. Otherwise the score itself becomes

meaningless. While it is possible to qualitatively describe systems in regard to the four

categories, because of the lack of references and guidelines, one can not assign an order

like 𝐴 ≤ 𝐵 to compare the explainability of system 𝐴 and 𝐵 against each other – even when

only comparing inside a particular category. For guidelines and reference values, one would

need to capture much empirical data about the explainability of systems related to each

category we described and then compile this data into a scoring system.

However, even if one would do this, it stands to reason that comparisons based on these

scoring systems are valid. Imagine the example of a system𝐴 being the autonomous vehicle

AI we described in the last section and a system 𝐵 a Large Language Model (LLM) like

GitHub Copilot. Even if we have reference values and guidelines to make a comparison,

these two systems are inherently different. So, comparing different types of systems against

each other is most likely not desirable in the first place. Instead, adopting guidelines and

reference values on a per-system-like basis is most likely more beneficial. The overarching

problem is now that by doing this one encodes domain / application-specific knowledge

into the scoring system, which forces the practitioner of the scoring system inadvertently

into a lower abstraction level. Hence, the ability to compare the explainability of systems at

the highest possible meta-level is lost.

Another problem with a scoring-based system is that it will most likely fall back to the

usage of heuristics, because either the system’s complexity is too high or the complexity

of the question one has regarding the explainability is too difficult to answer [51]. For

example, a relatively recent research field is the development of benchmarks that compare

the reasoning capability of different LLMs [70]. In this instance, the question of how good
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LLMs can reason is too difficult to assess otherwise, so heuristics that can at least test for

some instances are being used.

We must still tie our findings to the practical aspects of explainability we mentioned in the

Foundations Chapter 2. Which we will present in the following.

In the aforementioned Chapter, we subdivided explainability into roughly three main

concerns: (i) Design, (ii) Evaluation, and (iii) Methods (XAI). We will follow this approach

so readers can cross-reference the appropriate literature if further guidance is needed.

Design

We began this thesis by definitions of explainability as a non-functional requirement in

current research literature. These definitions are still valid and align mostly with our

proposed unified model. However, we somewhat disregarded the word “systems” in favor

of a generalized form of an abstract data space that is – strictly speaking – not confined

to system boundaries. Certainly, one can define systems and system boundaries rather

generously and vaguely to capture different interaction levels of systems. However, we

have purposely chosen not to do so. This is because systems usually need an a priori

definition itself before one can work with it – they do usually occur naturally, but their

definition is in this case, still obligatory. In the data space, however, these boundaries are
naturally by design and a strict a priori definition is not mandatory. A noticeable difference

between our proposed model and the presented definitions is the definition of the means𝑀 ,

which provides the explanation. With abduction as the core of the explainability process,

we diverged from the notion of “providing” an explanation to the notion of “arriving” at

an explanation. Our notion is not focused on mere matters of receiving an explanation

to understand an explanandum 𝑋 , but on arriving at an explanatory hypothesis that is

satisfying to a specific individual. Moreover, in light of that, we further derived from state-

of-the-art research literature that the core elements of an explanation are cognitive, causal,
and social and that humans evaluate explanations by these means. In that sense, our notion

is more concrete. We then presented a list of goals that an explainable system shall satisfy.

These goals are orthogonal to our model because we rely on an individuals’ discretion to

pursue them. Then, we introduced the levels of explainability, which we wanted to revisit to

encompass systems that are not agent-based. For this, we introduced the categorization in

the last section. While we could not end up with a level-based distinction, we strived for

a categorization that can – in theory – be utilized for creating a scoring-based system to

assess the explainability of a system. Lastly, we have shown the assumed relation between

model accuracy and model explainability, which is commonly found in research literature.

Truthfully, empirical validation is necessary, but this is not the subject of this thesis.

Evaluation and Methods

In the evaluation section, we focused on available metrics for (quantitatively) assessing

and comparing the goodness of explanations. We noted that with computed metrics, one
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relies on assumed proxies of goodness to assess the explainability of a system. Also, we

presented the quality function 𝑄𝐸 (𝑀) from the authors Bersani et al. [16], which we tried

to re-parameterize with already available XAI metrics to assess and compare different

explanations in furtherance of guiding a sensible FL architecture that incorporates XAI

methods. While this approach did not work out, we tried in this Chapter to broaden our

understanding of what explainability means with the concept of abduction.

Lastly, we mentioned the Rashomon Effect, which we already tied to our unified model by

recognizing it not only as a mathematical property but also as a source of unavoidable sub-

jectivity. We can even visualize this effect in Figure 6.5 as multiple spaces in the explanatory

hypothesis space that point – via prediction – to the same or close to the same data space.

Hence, the also commonly referred name of predictive multiplicity. Unsurprisingly, we could
also measure this effect in our experiments and noted differences in how participants of our

user study reacted to it.

6.4.2. Lessons Learned (2)

To put it briefly and conclude this Chapter, we have seen that explainability is a multifaceted

and multidisciplinary problem. We have seen and acknowledged each facet and tried to

analyze them using the concept of abduction. While we only argumentatively reasoned about

the importance of each facet, it becomes evident that for explainability to be comprehensible

and implementable for practitioners, more fundamental research in this area is necessary. In

essence, we showed the contrast of two different approaches in this thesis; in the first part,

we wanted to approach this problem technically, and in this part, we wanted to approach

it from a top-down perspective. Both approaches were reasonably valid and produced

scientifically valid results, which further research can build on.
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This chapter will first summarize our findings in 7.1 and provide an outlook for future

research directions in 7.2.

7.1. Summary

In this master’s thesis, we integrated and analyzed explainability as a non-functional

requirement in the context of FL. We addressed this problem by applying explainability in

the FL context and conducted several experiments. The first experiment (see Subsection 4.3)

validated that the globalMLmodel of the FL context shall be used for generating explanations

and that the FL algorithm is not that important in contrast to the data distribution. The

second experiment (see Subsection 4.4) evaluated the effect of predictive multiplicity or

the Rashomon Effect. We experimentally validated that different XAI methods are more

susceptible to this effect than others and should preferably be used if predictive multiplicity

is a valid concern. In experiment 3 (see Subsection 4.5), we explored the possibilities of

aggregating different XAI methods to create and optimize explanations. By using this

approach, we could measurably improve XAI metrics and have the opportunity to balance

the cost and performance of explainability methods by solving the associated multi-objective

optimization problem. Lastly, we explored how DP and misbehaving FL clients affect

explanations by measurably reducing XAI and performance metrics (see Subsections 4.6

and 4.7).

Our empirical acquired data was then (in parts) complemented by a user survey about

explainability in Chapter 5. Our results indicate that while the demand for explainability

is very high, there exists an inconsistency in how explanations are deemed satisfactory.

Also, we could show that while our optimized explanations result in numerically better

explanations, this does not map to a measurable increase in user acceptance.

Lastly, we took a multidisciplinary approach to defining explainability and its most common

elements (see Section 6.2). For this, we used the theory of abduction, which explained the

core principles of how explanations are formed and determined to be satisfactory by a

user. This was done in response to the previous Chapters to better understand the “human

problems” associated with explainability.
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7.2. Future Work

During our experiments with the FL framework Flower, it became more and more evident

that it did not fulfill all our requirements, especially since the current implementation of

the simulation engine was a limiting factor. Our implementation of the simulation engine

can still be further refined to allow for a better parallelization and utilization of available

resources. Currently, it is limited to a single computer and a single Graphics Processing

Unit (GPU). The simulation engine can be extended for cluster usage and a more optimized,

adaptive management of the computing resources to allow for more real-world simulations

with many independent devices while still having the benefit of a simulation’s controlled

environment. Exciting features are:

• Auto-scaling mechanisms and checkpointing.

• Simulation of failures and other more elaborated scenarios (e.g., simulation of networks

with package loss).

• Out-of-band communication allowing for interventions.

• Allow for further variability of the FL loop.

• Easier integration of monitoring solutions.

We were particularly surprised that the Flower community does not emphasize the use of

the simulation engine further, which is, in our eyes, one of the most interesting applications

of FL in research.

If one desires to conduct further research on the optimization of explanations, we suggest

further evaluating the influence and computation capabilities with evolutionary algorithms.

In this thesis, we only scratched the surface and used the most basic way of using them.

Further optimizations can most certainly achieved by further customization of these algo-

rithms. Generally speaking, we were also pleased with the concept of making something
measurable, actionable. Particularly, we would want to investigate how this concept can be

further applied to other problems in the domain of non-functional requirements.

Next is the aspect of FL in conjunction with security-related questions. So, as stated before,

FL is only helpful when there is a specific need to conduct the training in a federated fashion.

However, this still does not guarantee that data will not leak. One method we introduced

for mitigation was DP. As we documented, DP strongly cuts into the performance of the

ML model and, in turn, into the usefulness of XAI methods. It would be exciting if a

method could be developed that simultaneously satisfies both privacy, and explainability

requirements.

Another interesting research direction is the potential application of LLMs for retrieving

or generating explanations [140]. What is interesting for us is the ability to retrieve expla-

nation scenarios from software artifacts so that engineers can further improve the overall

explainability of the software in question. Another interesting aspect is the possibility of
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generating explanatory hypotheseses, as presented in Chapter 6. Google already conducts

research in this area, as seen in their technical paper about a co-scientist agent helping

generate scientific hypotheses [79]. While we do not have the resources for research of this

kind, we could come up with possible use cases and evaluation mechanisms for a co-scientist

used for explainability purposes. LLMs are particularly interesting in terms of explainability

because, at the time of writing, there are not many methods for explainability that can be

applied to it.

Lastly, we want to mention the human-machine collaboration that needs to be respected

in terms of explainability. While some research is already done in this area, we found that

there are still possible research gaps. For example, to the author’s best knowledge, there is

currently no viable engineering approach for explainability in software engineering that

includes both the human-machine relation and, on the other hand, the practical implemen-

tation of explainability mechanisms. So we strongly suggest further research in this area to

make explainability more approachable.

For this master’s thesis, Grammarly has been used to improve grammar and sentence structure.
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A. Appendix

Explainability

that the other important steps in the model can be 
safely neglected. XAI requires good tools to support 
understanding rather than the automatic generation 
and presentation of “explanations,” which does not 
go far enough in supporting abductive reasoning in 
many scenarios.

Prospects
We know that concepts of abduction can be imple-
mented. Makatchev, Jordan, and VanLehn (2004a, 
2004b) demonstrated that an ITS can generate plau-
sible hypotheses about students’ reasoning. This is 
suggestive of the possibility of supporting people’s 
abductive reasoning about how an AI system works 
and how it fails. Mooney (2000) implemented ab-
duction in the form of a process that would mod-
ify its knowledge base to make it consistent with 
evidence. This accords with the Peircean notion 
of plausibility judgment and the resolution of ex-
planations (see Table 3, rows 3 and 4). The field 
of ITSs has demonstrated that it is possible for a 
computer system to engage in meaningful interac-
tion with learners and facilitate their sensemaking. 
Clancey and Hoffman (2022) reviewed a number 
of ITSs, listing some specific capabilities that have 

been implemented and evaluated and that align with 
the requirements for AI systems that would support 
abductive reasoning (see Table 3, rows 3, 4, and 5). 
For example, an ITS can promote understanding 
by enabling the trainee to make rapid comparisons 
of cases (exploration). An ITS can help the trainee 
reflect on experience to integrate fragmentary gen-
eral and situated knowledge.
	 Clearly, there is no single clear or easy path to the 
computational modeling of the full process of explor-
atory sensemaking as Peirce described it. It might 
be worthwhile to pursue this, to develop intelligent 
systems that support people to perform rigorous ab-
ductive reasoning, and to allow for the assessment of 
abductive reasoning as a learnable skill.
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TABLE 3. Supporting Abduction in AI

Process Explainability requirements

1. �Observation of an event or 
phenomenon.

Design clear interfaces to make it easy to identify what has happened.

Design tools that make it easy to highlight events that could be considered 
anomalous or unusual for a particular domain.

2. �Generation of one or more 
possible explanations for some 
observed event or phenomenon.

Design interfaces and affordances that either list potential (archived) hypotheses 
or help people compose a list of new potential hypotheses. Hypotheses in this 
case would be the “causes” or “reasons” that influence the AI’s outputs.

3. �Judging the plausibility of the 
candidate explanations.

Design interactions and affordances that make it easy for people to learn how the 
causes (inputs) affect system outputs. This would include support for contrastive 
analysis: How would a decision of the AI change if some variable had been 
different? Why would an AI decision not change if some variable were different?

4. �Resolving the explanation. Make it easy for people to explore how the AI operates when it is pushed to the 
boundaries of its competence envelope, to surmise the when, how, and why.

5. Extending the explanation. Make it easy for people to revisit and revise any of their determinations if they 
receive new information or there are new surprises, or if they have new insights.

Make it easy for people to explore follow-up questions that the explanatory or 
sensemaking process may have raised for them.

Make it easy for people to access and share information about the AI.
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Figure A.1.: Explainability Requirements to Support Abductive AI [85].

interest, assimilated into an initial yet incomplete 
understanding (diSessa, 2018), producing a more 
complete model of that system, one that is consistent 
with the given information.
	 The psychological perspective on Peirce’s notion 
of an explanation for a surprising event conjures Witt-
genstein’s argument about the role of tacit knowledge 
in language understanding (Wittgenstein, 1953). A 
phenomenon or event could not be a surprise unless 
the observer already had in mind some expectation, 
understanding, or mental model of the phenomenon. 
It follows that a surprise is not just an act of recog-
nition (of a disconnect between a tacit model and 
experienced phenomenon). Rather, there must be a 
perspective shift or some consideration of the notion 
that there might be more than one possible model. 
Reasoning about possible models involves a plausibil-
ity judgment.

	 Figure 3 presents a process model version of the 
Peircean process described in Table 2. In the spirit of 
Peirce’s writings, this describes the process of “rea-
soning from surprise to inquiry,” as he phrased it in 
a letter written in 1905 (Bellucci, 2015).
	 To Peirce, abduction involves active exploration, 
the empirical assessment of competing hypotheses 
(Capaldi & Proctor, 2008). Abduction is an activity 
that is extended in time, having its own structure and 
dynamics. It is not a punctuated act of reasoning like 
making a logical inference. But the classical forms 
(deduction and induction) are involved in Peircean 
abductive exploration. Referencing row 5 in Table 
2, this is where abduction involves deduction and 
induction as integral to the process of empirical 
evaluation. In some of his discussions of abduction 
Peirce considers abduction as a hybrid, that is, abduc-
tive reasoning “partakes of the nature of induction” 

FIGURE 3. A process model representing Peircean abduction
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Figure A.2.: Process Model for Abduction [85].
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A. Appendix

Property Reference

Abornmality [5]

Actionability [124]

Agreement [22]

Biased inferences [22]

Causality [5, 15]

Certainty [5, 15, 124, 141]

Coherence [7, 8, 104, 124, 141]

Compactness [40, 124, 141]

Compatibility [18]

Completeness [7, 8, 124, 141]

Complexity [18, 40, 50, 141, 143]

Comprehensibility [5, 15, 124]

Consistency [5, 141]

Continuity [141]

Contrastivity [141]

Controllability [141]

Convex Combination [18]

Conviction [18]

Coreness [7]

Correctness [141]

Counter-

Monotonicity

[8]

Counterintuitive [22]

Exhaustivity [7]

Fairness [5, 15]

Faithfulness [18, 40, 50, 84, 97,

124, 178]

Feasibility [7, 8]

Fidelity [4, 8, 40, 50, 143, 191]

Non-Circularity [104]

Globalness [84]

Homogeneity [40]

Property Reference

Identity [18]

Implementation

Invariance

[177]

Interactivity [15, 124]

Interpretability [5, 15]

Irreducibility [7, 8]

Linearity [177]

Mismatch [22]

Monotonicity [8, 143]

Non-Contradictory [22]

Non-Misleading [22, 82]

Novelty [124]

Personalization [124]

Privacy [5, 15]

Relevance [7, 104]

Representativeness [5, 7]

Robustness [4, 5, 40, 50, 82, 104, 178]

Selectivity [126]

Sensitivity [5, 18, 40, 50, 97, 143, 177,

191]

Self-evidencing [104]

Separability [18]

Simplicity [104, 143]

Smoothness [178]

Sociological [5]

Sparseness [4]

Specifity [5]

Stability [3, 5, 22, 124]

Success [7, 8]

Symmetry [177]

Translucence [5, 124]

Validity [8]

Table A.1.: Explainability Properties from different Papers.
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Federated Learning

Strategy
Flower Server

start_server
Flower Client Flower Client

Get initial

model parameters

Federated

Training

Centralized

Evaluation

Federated

Evaluation

Next round, continue

with federated training

initialize_parameters

Parameters

configure_fit

List[Tuple[ClientProxy, FitIns]]

FitIns

FitIns

FitRes

FitRes

aggregate_fit

List[FitRes]

Aggregated model parameters

evaluate

Centralized evaluation result

configure_evaluate

List[Tuple[ClientProxy, EvaluateIns]]

EvaluateIns

EvaluateIns

EvaluateRes

EvaluateRes

aggregate_evaluate

List[EvaluateRes]

Aggregated evaluation results

Strategy
Flower Server

start_server
Flower Client Flower Client

Figure A.3.: Flower Strategy Sequence Diagram [17].
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A. Appendix

Experiment Settings

Key Value

num-server-rounds 25

fraction-fit 1.0

local-epochs 1

fraction-evaluate 1.0

batch-size 256

alpha 0.1

proximal_mu 1.0

beta_1 0.1

beta_2 0.1

eta 0.1

tau 1E-9

eta_l 0.1

server_momentum 0.0

server_learning_rate 1E-3

beta 0.2

num_malicious_clients 1

num_clients_to_keep 5

learning_rate 1E-3

Optimizer & Loss CrossEntropyLoss & Adam

clipping_norm 0.5

dp-sensitivity 1.2

dp-epsilon 5.0

dp-delta 0.0001

dp-noise-multiplier 2

Table A.2.: Hyperparameters for Series of Experiments 1.

Experiment Data

(a) Individual Improvement. (b) Overall Improvement.

Figure A.4.: Results for Respecting the Real Cost e.g., Using
⌈
𝜓
⌉
.
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(a) Individual improvement via Averaging.
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(b) Individual improvement via cvxpy.
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(c) Individual improvement via pymoo.

Figure A.5.: Improvement via Optimization.
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Figure A.6.: Individual improvement on Perturbation-based XAI Methods.
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Figure A.7.: Individual improvement over all Classes simultaniously.

Stability Measurements
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(a) SSIM comparing to last round.
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(b) SSIM comparing to last round and

grouped by round.
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(c) SSIM comparing to last round and

grouped by class.
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(d) SSIM comparing to next round and

grouped by round.

Figure A.8.: Measuring Stability FedAvg/IID (1).
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(a) SSIM comparing to next round and

grouped by class.
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(b) SPEAR comparing to next round.
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(c) SPEAR comparing to next round and

grouped by round.
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(d) SPEAR comparing to next round and

grouped by class.
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(e) SPEAR comparing to last round.
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(f) SPEAR comparing to last round and

grouped by round.
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(g) SPEAR comparing to last round and

grouped by class.
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(h) TAU comparing to next round.
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(i) TAU comparing to next round and

grouped by round.
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(j) TAU comparing to next round and

grouped by class.

Figure A.9.: Measuring Stability FedAvg/IID (2)
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(a) RankTAU comparing to last round and

grouped by round.
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(b) TAU comparing to last round.
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(c) TAU comparing to last round and

grouped by round.
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(d) TAU comparing to last round and

grouped by class.
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(e) RankTAU comparing to next round and

grouped by class.
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(f) RankTAU comparing to next round and

grouped by round.
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(g) TopTAU comparing to next round.
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(h) TopTAU comparing to last round.
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(i) TopTAU comparing to last round and

grouped by class.
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(j) RankTAU comparing to last round.

Figure A.10.: Measuring Stability FedAvg/IID (3).
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(a) RankTAU comparing to last round and

grouped by class.
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(b) SSIM comparing to last round.
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(c) SSIM comparing to last round and

grouped by round.
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(d) SSIM comparing to last round and

grouped by class.
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(e) SSIM comparing to next round.
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(f) SSIM comparing to next round and

grouped by round.
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(g) SSIM comparing to next round and

grouped by class.
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(h) SPEAR comparing to next round.
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(i) SPEAR comparing to next round and

grouped by round.
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(j) SPEAR comparing to next round and

grouped by class.

Figure A.11.: Measuring Stability FedAvg/Square (1).
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(a) SPEAR comparing to last round.
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(b) SPEAR comparing to last round and

grouped by round.
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(c) SPEAR comparing to last round and

grouped by class.
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(d) TAU comparing to next round.
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(e) TAU comparing to next round and

grouped by round.

ca
ptu

m
.d

ec
onvo

lutio
n

ca
ptu

m
.d

ee
plift

ca
ptu

m
.d

ee
plift

sh
ap

ca
ptu

m
.gra

dien
t sh

ap

ca
ptu

m
.guided

back
pro

p

ca
ptu

m
.guided

gra
dca

m

ca
ptu

m
.in

put x
gra

dien
t

ca
ptu

m
.sa

lie
ncy

pyt
hon.lim

e

pyt
orc

h.gra
d

ca
m

kpca

pyt
orc

h.gra
dca

m

pyt
orc

h.gra
dca

m
ablatio

n

pyt
orc

h.gra
dca

m
eig

en

pyt
orc

h.gra
dca

m
eig

en
gra

d

pyt
orc

h.gra
dca

m
hire

s

pyt
orc

h.gra
dca

m
plus plus

pyt
orc

h.gra
dca

m
sc

ore

pyt
orc

h.gra
dca

m
x

pyt
orc

h.sh
apley

ca
m

method

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

TAUnext

(f) TAU comparing to next round and

grouped by class.
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(g) TAU comparing to last round.
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(h) TAU comparing to last round and

grouped by round.
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(i) TAU comparing to last round and

grouped by class.
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(j) RankTAU comparing to next round.

Figure A.12.: Measuring Stability FedAvg/Square (2).
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(a) RankTAU comparing to next round and

grouped by class.
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(b) RankTAU comparing to next round and

grouped by round.
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(c) TopTAU comparing to next round.
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(d) TopTAU comparing to last round.
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(e) TopTAU comparing to last round.
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(f) TopTAU comparing to last round and

grouped by class.
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(g) RankTAU comparing to last round.
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(h) RankTAU comparing to last round and

grouped by class.
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(i) RankTAU comparing to last round and

grouped by round.

Figure A.13.: Measuring Stability FedAvg/Square (3).
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(a) Sign Discrepancy.
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(b) Sign Obscurity.
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(c) Histogram Discrepancy.
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(d) Histogram Obscurity.

Figure A.14.: Measuring Rashomon Effect FedAvg/Square.
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(a) SSIM comparing to last round.

ca
ptu

m
.d

ec
onvo

lutio
n

ca
ptu

m
.d

ee
plift

ca
ptu

m
.d

ee
plift

sh
ap

ca
ptu

m
.gra

dien
t sh

ap

ca
ptu

m
.guided

back
pro

p

ca
ptu

m
.guided

gra
dca

m

ca
ptu

m
.in

put x
gra

dien
t

ca
ptu

m
.sa

lie
ncy

pyt
hon.lim

e

pyt
orc

h.gra
d

ca
m

kpca

pyt
orc

h.gra
dca

m

pyt
orc

h.gra
dca

m
ablatio

n

pyt
orc

h.gra
dca

m
eig

en

pyt
orc

h.gra
dca

m
eig

en
gra

d

pyt
orc

h.gra
dca

m
hire

s

pyt
orc

h.gra
dca

m
plus plus

pyt
orc

h.gra
dca

m
sc

ore

pyt
orc

h.gra
dca

m
x

pyt
orc

h.sh
apley

ca
m

method

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

SSIMlast

(b) SSIM comparing to last round and

grouped by round.
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(c) SSIM comparing to last round and

grouped by class.
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(d) SSIM comparing to next round.
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(e) SSIM comparing to next round and

grouped by round.
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(f) SSIM comparing to next round and

grouped by class.
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(g) SPEAR comparing to next round.
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(h) SPEAR comparing to next round and

grouped by round.
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(i) SPEAR comparing to next round and

grouped by class.

ca
ptu

m
.d

ec
onvo

lutio
n

ca
ptu

m
.d

ee
plift

ca
ptu

m
.d

ee
plift

sh
ap

ca
ptu

m
.gra

dien
t sh

ap

ca
ptu

m
.guided

back
pro

p

ca
ptu

m
.guided

gra
dca

m

ca
ptu

m
.in

put x
gra

dien
t

ca
ptu

m
.sa

lie
ncy

pyt
hon.lim

e

pyt
orc

h.gra
d

ca
m

kpca

pyt
orc

h.gra
dca

m

pyt
orc

h.gra
dca

m
ablatio

n

pyt
orc

h.gra
dca

m
eig

en

pyt
orc

h.gra
dca

m
eig

en
gra

d

pyt
orc

h.gra
dca

m
hire

s

pyt
orc

h.gra
dca

m
plus plus

pyt
orc

h.gra
dca

m
sc

ore

pyt
orc

h.gra
dca

m
x

pyt
orc

h.sh
apley

ca
m

method

−1.0

−0.5

0.0

0.5

1.0

va
lu

e

SPEARlast

(j) SPEAR comparing to last round.

Figure A.15.: Measuring Stability FedAvg/Dirichlet (1).
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A. Appendix
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(a) SPEAR comparing to last round and

grouped by round.
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(b) SPEAR comparing to last round and

grouped by class.
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(c) TAU comparing to next round.
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(d) TAU comparing to next round and

grouped by round.
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(e) TAU comparing to next round and

grouped by class.

ca
ptu

m
.d

ec
onvo

lutio
n

ca
ptu

m
.d

ee
plift

ca
ptu

m
.d

ee
plift

sh
ap

ca
ptu

m
.gra

dien
t sh

ap

ca
ptu

m
.guided

back
pro

p

ca
ptu

m
.guided

gra
dca

m

ca
ptu

m
.in

put x
gra

dien
t

ca
ptu

m
.sa

lie
ncy

pyt
hon.lim

e

pyt
orc

h.gra
d

ca
m

kpca

pyt
orc

h.gra
dca

m

pyt
orc

h.gra
dca

m
ablatio

n

pyt
orc

h.gra
dca

m
eig

en

pyt
orc

h.gra
dca

m
eig

en
gra

d

pyt
orc

h.gra
dca

m
hire

s

pyt
orc

h.gra
dca

m
plus plus

pyt
orc

h.gra
dca

m
sc

ore

pyt
orc

h.gra
dca

m
x

pyt
orc

h.sh
apley

ca
m

method

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

va
lu

e

TAUlast

(f) TAU comparing to last round.
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(g) TAU comparing to last round and

grouped by round.
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(h) TAU comparing to last round and

grouped by class.
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(i) RankTAU comparing to next round.
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(j) RankTAU comparing to next round and

grouped by class.

Figure A.16.: Measuring Stability FedAvg/Dirichlet (2).
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(a) RankTAU comparing to next round and

grouped by round.
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(b) TopTAU comparing to next round.
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(c) TopTAU comparing to last round.
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(d) TopTAU comparing to last round.
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(e) TopTAU comparing to last round and

grouped by class.
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(f) RankTAU comparing to last round.
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(g) RankTAU comparing to last round and

grouped by class.

ca
ptu

m
.d

ec
onvo

lutio
n

ca
ptu

m
.d

ee
plift

ca
ptu

m
.d

ee
plift

sh
ap

ca
ptu

m
.gra

dien
t sh

ap

ca
ptu

m
.guided

back
pro

p

ca
ptu

m
.guided

gra
dca

m

ca
ptu

m
.in

put x
gra

dien
t

ca
ptu

m
.sa

lie
ncy

pyt
hon.lim

e

pyt
orc

h.gra
d

ca
m

kpca

pyt
orc

h.gra
dca

m

pyt
orc

h.gra
dca

m
ablatio

n

pyt
orc

h.gra
dca

m
eig

en

pyt
orc

h.gra
dca

m
eig

en
gra

d

pyt
orc

h.gra
dca

m
hire

s

pyt
orc

h.gra
dca

m
plus plus

pyt
orc

h.gra
dca

m
sc

ore

pyt
orc

h.gra
dca

m
x

pyt
orc

h.sh
apley

ca
m

method

0.0

0.2

0.4

0.6

0.8

va
lu

e

RankTAUlast

(h) RankTAU comparing to last round and

grouped by round.

Figure A.17.: Measuring Stability FedAvg/Dirichlet (3).
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A. Appendix
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(a) Sign Discrepancy.
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(b) Sign Obscurity.
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(c) Histogram Discrepancy.
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(d) Histogram Obscurity.

Figure A.18.: Measuring Rashomon Effect FedAvg/Dirichlet.
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(b) With Server-side fixed clipping.
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(c) With Client-side fixed clipping.

Figure A.19.: Results for Experiment 4: 150 FL Rounds.
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Fragebogen

1 About You

2 Explainability explanation

3 Explainability Basics

Which gender are you?

How old are you?

What is the highest academic degree that you have?

How knowledgeable are you in software engineering?

None Poorly Fairly Good Very Good Excellent Exceptional

General Knowledge

Programming

Software Architecture and Design

How knowledgeable are you in AI and Explainable AI (XAI)?

  None Poorly Fairly Good Very Good Excellent Exceptional

Familiarity with AI (especially Machine Learning (ML))

Usage of AI (especially ML) in software

Developing software that includes AI (especially ML)

Familiarity with Explainable AI (XAI)

Usage of XAI methods

How many years of software engineering experience do you have?

(Please read before continuing)

What is explainability as a non-functional quality?

There is no definitive, agreed-upon definition of explainability as a non-functional quality. However, the most intuitive way to describe explainability is as:

Enabling understanding of a particular aspect of a system that needs to be explained.

Examples:

• A car navigation system changes the selected route. The aspect to be explained is why the route has been changed. An explanation could be that a better route has been found (in terms of fuel consumption, etc.).

• An image classification tool classifies an image in a certain way. The aspect to be explained is why it is classified this way. One explanation could be that certain parts of the images contributed to higher activation scores,

so the proposed classification was selected.

Attention: If you don't know the answer to any of the questions in the context of software engineering, think about an explanation someone gives you orally.

There is no right or wrong answer.

I don't want to answer

Female

Male

Diverse

I don't want to answer

None

Bachelor

Master

Ph.D.



4 Explainability Optimization

Give your opinions on explainability in software engineering

  Completely Disagree Mostly Disagree Slightly Disagree Undecided Slightly Agree Mostly Agree Completely Agree

I have thought about explainability as a non-functional quality in software engineering before

(not only XAI methods!)

I think software should (in general) be made more explainable

I think software that I daily use should be more explainable

I wish software that uses AI is more explainable

I have prejudices against AI because of their lack of explainability

  Completely Disagree Mostly Disagree Slightly Disagree Undecided Slightly Agree Mostly Agree Completely Agree

Even if software (without ML involved) would provide to me an explanation I would still be

sceptical

Even if software (with ML involved) would provide to me an explanation I would still be

sceptical

I recognize the need for explainability as a non-functional quality in software engineering

I think explainability becomes more important in conjunction with AI (especially ML)

I have a good understanding of how AI works

  Completely Disagree Mostly Disagree Slightly Disagree Undecided Slightly Agree Mostly Agree Completely Agree

I have a good understanding of how AI reasons

Regarding an explanation, the following is essential to me:

Please try to be as conscise as possible in your agreement.

  Completely Disagree Mostly Disagree Slightly Disagree Undecided Slightly Agree Mostly Agree Completely Agree

The presentation of an explanation is important to me (e.g., as text, visual, example-based etc.)

Understanding the underlying reasoning of an explanation is important to me

The ability to further question or judge an explanation is important to me (e.g., if I don't

understand the explanation)

The ability to introduce feedback about an explanation is important to me (e.g., if the

explanation seems redundant, ill presented etc.)

Is something else more important to you regarding an explanation?  (optional)

Please write it down.

You are running two identical programs with the same inputs and receive an explanation from each program.

Consider the scenario described and give your agreement of the statements below.

  Completely Disagree Mostly Disagree Slightly Disagree Undecided Slightly Agree Mostly Agree Completely Agree

I'm aware that the explanations could be different from each other

I accept explanations that are different from each other

I accept slightly different explanations (e.g., difference is measured based on some metric)

I do not accept different explanations

I only accept different explanations if I knew that AI (especially ML) is involved

I only accept slightly different explanations (e.g., difference is measured based on some metric)

if I knew that AI (especially ML) is involved

Which statement do you agree with the most?

Please give your opinions below.

I only accept a provable "true" explanation as a valid explanation

I can accept the most likely explanation as a valid explanation

I would accept an explanation based on my own preferences

Other (Please write down)

Task Introduction

A common way of visualizing what a machine learning model "sees" is via a heatmap.

For example, we have the following input image (left) and a heatmap (right).

Please answer the following questions regarding these two images.



5.1.1.1 User1

5.1.2.1 User2

Do you agree with these statements?

  Completely Disagree Mostly Disagree Slightly Disagree Undecided Slightly Agree Mostly Agree Completely Agree

The heatmap does help me understand the reasoning of the AI

The heatmap suffices as an explanation to me

I like to test multiple examples first before I'm convinced of the explanation

This is not an explanation to me

Now, additionally the following sentence is provided with the explanation: "I detected whiskers and pointy ears in the image; therefore, I classified the image as a cat."

  Completely Disagree Mostly Disagree Slightly Disagree Undecided Slightly Agree Mostly Agree Completely Agree

The heatmap alone suffices to me as an explanation

The combination of both heatmap and the addition suffices to me as an explanation

The textual addition alone suffices to me as an explanation

I'm still sceptical about the explanation

Additionally, you are assured that the AI's accuracy is very high, e.g., ~99.8%. Which statement do you agree with the most?

An explanation seems redundant to me in that case

I'm still sceptical about the AI

I would prefer a different kind of explanation

Reaching an explanation that would satisfy me seems impossible

None of these (please write into Question 15)

Do you have any other notes or comments you want to make before continuing (optional)?

The following picture was classified as "airplane":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide



5.1.3.1 User3

5.1.4.1 User4

The following picture was classified as "airplane":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide

The following picture was classified as "airplane":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide



5.2.1.1 User1

5.2.2.1 User2

The following picture was classified as "airplane":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide

The following picture was classified as "car":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide



5.2.3.1 User3

5.2.4.1 User4

The following picture was classified as "car":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide

The following picture was classified as "car":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide



5.3.1.1 User1

5.3.2.1 User2

The following picture was classified as "car":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide

The following picture was classified as "horse":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide



5.3.3.1 User3

5.3.4.1 User4

The following picture was classified as "horse":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide

The following picture was classified as "horse":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide



5.4.1.1 User1

5.4.2.1 User2

The following picture was classified as "horse":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide

The following picture was classified as "deer":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide



5.4.3.1 User3

5.4.4.1 User4

The following picture was classified as "deer":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide

The following picture was classified as "deer":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide



5.5.1.1 User1

5.5.2.1 User2

The following picture was classified as "deer":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide

The following picture was classified as "frog":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide



5.5.3.1 User3

5.5.4.1 User4

The following picture was classified as "frog":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide

The following picture was classified as "frog":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide



5.6.1.1 User1

5.6.2.1 User2

The following picture was classified as "frog":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it. The classification result is written above each image.

     

I can't decide

The following picture was classified as "car":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide



5.6.3.1 User3

5.6.4.1 User4

The following picture was classified as "car":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide

The following picture was classified as "car":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide



5.7.1.1 User1

5.7.2.1 User2

The following picture was classified as "car":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide

The following picture was classified as "car":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide



5.7.3.1 User3

5.7.4.1 User4

The following picture was classified as "car":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide

The following picture was classified as "car":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide



5.8.1.1 User1

5.8.2.1 User2

The following picture was classified as "car":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide

The following picture was classified as "bird":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide



5.8.3.1 User3

5.8.4.1 User4

The following picture was classified as "bird":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide

The following picture was classified as "bird":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide



5.9.1.1 User1

5.9.2.1 User2

The following picture was classified as "bird":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide

The following picture was classified as "boat":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide



5.9.3.1 User3

5.9.4.1 User4

The following picture was classified as "boat":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide

The following picture was classified as "boat":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide



5.10.1.1 User1

5.10.2.1 User2

The following picture was classified as "boat":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide

The following picture was classified as "truck":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide



5.10.3.1 User3

5.10.4.1 User4

The following picture was classified as "truck":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide

The following picture was classified as "truck":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide



6 Commitment

7 Endseite

The following picture was classified as "truck":

Which explanation of the classification would you find more convincing?

Please select the answer you agree with the most by clicking on it.

     

I can't decide

Do you have any other notes or comments you want to make before continuing (optional)?

Please click CONTINUE on the screen to submit your answers. Once submitted, they can not be changed.

Do you want to submit your answers?

Thank you very much for your participation!

You can close this window now.

If you have any questions regarding the survey, please contact us via nicolas.schuler@student.kit.edu.

Have a nice day!

CLOSE WINDOW

| |
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